The next-simplest example

Pavol writes: For the next simplest example look in my paper with David, sect. 3. You can read it, but you can just look at the parenthesized braid with 4 strands which is drawn there. Let \(J \) in \(U(g+g+g+g)[\hbar] \) be what corresponds to this braid.

Now if \(A \) is an algebra in \(U(g+g)-\text{Mod}^\Phi \) (notice: there is no bar over any \(g \)) then:

1. \(A \) is a \(Ug \)-module, where this \(g \) is the diagonal in \(g+g \), but the original product \(m \) on \(A \) is no longer associative in \(Ug-\text{Mod}^\Phi \)

2. however, if we compose \(m \) with the action of \(J \): \(A \otimes A \rightarrow A \otimes A \), then this new product \(m' \) is associative in \(Ug-\text{Mod}^\Phi \)

3. we can have there a spectator Lie algebra \(h \), i.e. \(A \) is in \(U(g+h)-\text{Mod}^\Phi \), and we make it to an associative algebra in \(U(g+h)-\text{Mod}^\Phi \) (with the same \(J \) in \(U(g+g+g+g) \))

There are now two possibilities for the "next simplest" algebra:

1. start with \(A=\text{C}^\infty((G \times \bar{G})/G \times (G \times \bar{G})/G)=\text{C}^\infty(G \times G) \), which is commutative associative in \(U(g+g+\bar{g}+\bar{g}) \), treat \(\bar{g} \) as the spectator \(h \); the composition of the original product with the action of \(J \) makes \(A \) to an associative (but not commutative) algebra in \(U(g+\bar{g}+\bar{g}) \). This is the quantization of the moduli space of a triangle (with one vertex marked with + and two with -)

2. if spectator Lie algebras don’t sound so simple, choose any coisotropic \(C_1, C_2 \subset G \), and start with \(\text{C}^\infty(G/C_1 \times G/C_2) \) as a commutative associative algebra in \(U(g+g)-\text{Mod}^\Phi \).