Cheat Sheet 3D Topology Material from Hatcher's notes and from Hempel's book.

http://drorbn.net/AcademicPensieve/2013-08/ initiated 31/8/13; modified 8/9/13, 8:38pm; continued 2013-09

Theorem (Alexander, 1920s). An embedded 2-sphere in \mathbb{R}^3 bounds a 3-ball.

Dehn's Lemma (Dehn 1910 (wrong), Papakyriakopoulos 1950s). M a 3-manifold, $f: B^2 \to M$ s.t. for some neighborhood A of ∂B^2 in B^2 the restriction $F|_A$ is an embedding and $f^{-1}(f(A)) = A$. Then $f|_{\partial B^2}$ extends to an embedding $g: B^2 \to M$.

The Loop Theorem (Stallings 1960, implies Dehn's

lemma). M a 3-manifold, F a connected 2-manifold in ∂M , $\ker(\pi_1(F) \to \pi_1(M) \not\subset N \triangleleft \pi_1(F)$. Then there is a proper embedding $g: (B^2, \partial B^2) \to (M, F)$ s.t. $[g \mid_{\partial B^2}] \notin N$.

The Sphere Theorem. M orientable 3-manifold, N a $\pi_1(M)$ -invariant proper subgroup of $\pi_2(M)$. Then there is an embedding $g \colon S^2 \to M$ s.t. $[g] \notin N$.