I wish I had my purse up the first time around I thought about these things.

Abstractly, VC is achieved by slicing the input disks into “generalized pants”:

1. Dots slide to the minimal out disk on their component.

2. The genus of a component is $g = \frac{2-2g}{2} \left[2 + \frac{1}{2}(\text{size}) - \# \text{[boundary disks]} \right]$

Example: Saddle 0 saddle: $\frac{1}{2}(2 + \frac{1}{2}(4) - 4) = 0$

Example: Identity $2n$ on disk: $\frac{1}{2}(2 + n - (2 + n)) = 0$

Example: $\frac{1}{2}(2 + 3 - 1 - 2) = 0$
\[\frac{1}{2}(2+4-1-3-2) = 0 \]

\[\frac{1}{2}(2+3-3-1) = 1 \]

\[\frac{1}{2}(2+6-1-2-1) = 2 \]

3. genus \(\geq 2 \): composition is 0.

- genus 1: Any dot in input \(\Rightarrow \) 0
 - No dots in input \(\Rightarrow \) all outputs are dotted.

- genus 0: \(\geq 2 \) dots in input \(\Rightarrow \) 0
 - One dot in input \(\Rightarrow \) all outputs are dotted.

- No dots in input \(\Rightarrow \) sum of all ways of having all dots but one dotted.

4. Therefore, “decor” may simply be the “no dots” output in each case; and after evaluations, squares must be removed.