Knot Theory
Homologies

\[\frac{3}{2} \text{duality} \]

3D N=2 SUSY

M5-Brane Theory

An Algebraic curve

\[A^{\text{super}}(x, y, a, t) = 0 \]

\[x, y \in \mathbb{C}^* \]

\[\hat{A}^{\text{super}}(x, y, q, a, t) = 0 \]

Chern-Simons Perspective

\[Z(K, q) = \oint DA \left(Tr_k P e^{\frac{2i}{k} A} \right) e^{\frac{k+i}{2} \text{Tr} (Aa d A + \frac{2}{3} A A A A A) } \]

\[q = e^L = e^{\frac{2\pi i}{k+N}} N \text{ of SUSY} \]

Related to coloured HOMFLY----

here \(x^n \) is \(q^m \).

Restricts to the Jones polynomial----

Coloured Jones

I'm tired of
\[\text{Jones}_n(k, q) = J_n(k, a=q^{2k}, q) \]

\[\frac{1}{n} \exp \left(\frac{1}{n} S_{0}(x) + \frac{1}{n^2} S_{1}(x) + \frac{1}{n^3} S_{2}(x) + \ldots \right) \]

\(q^n = x \text{ fixed} \)

Related to the Volume of the knot "Volume conjecture"

\[S_{0}(x) = \int \log y \frac{dx}{x} \]

\(A(x, y) = 0 \)

Quantum Volume Conjecture

\[\text{Jones}_n = 0 \] (relations)

\[q \text{, } q^2 \text{, } q^3 \text{, } q^4 \text{, } \ldots \]

\[\text{Jones}_n = q^n \text{ Jones}_n \]

"The AJ conjecture"

\[\lim_{q \to 1} \hat{A} = A \]

Example For 3_1, \(A(x, y) = (y-1)(y+x^3) \)