Property 9.6. ad_{u} is the infinitesimal version of both C_{u} and $R C_{u}$. Namely, if $\delta \gamma$ is an infinitesimal, then $C_{u}^{\delta \gamma}=R C_{u}^{\delta \gamma}=1+\operatorname{ad}_{u}\{\delta \gamma\}$.

We omit the easy proof of this property and move on to δC_{u}^{γ} and $\delta R C_{u}^{\gamma}$:
Lemma 9.7.

$$
\delta C_{u}^{\gamma}=\operatorname{ad}_{u}\left\{\delta \gamma / / \frac{e^{\operatorname{ad} \gamma}-1}{\operatorname{ad} \gamma} / / R C_{u}^{-\gamma}\right\} / / C_{u}^{\gamma}
$$

and

$$
\delta R C_{u}^{\gamma}=R C_{u}^{\gamma} / / \operatorname{ad}_{u}\left\{\delta \gamma / / \frac{1-e^{-\operatorname{ad} \gamma}}{\operatorname{ad} \gamma} / / R C_{u}^{\gamma}\right\}
$$

Proof. Substitute α and $\delta \beta$. into Equation (12) 1 and get $R C_{u}^{\mathrm{bch}(\alpha, \delta \beta)}=R C^{\alpha} / / R C_{u}^{\delta \beta / / R C_{u}^{\alpha}}$, and hence using Property 9.6 for the infinitesimal $\delta \beta / / R C_{u}^{\alpha}$ and Lemma 9.4 with $\delta \alpha=\beta=0$ on $\operatorname{bch}(\alpha, \delta \beta)$,

$$
R C_{u}^{\alpha+\left(\delta \beta / / \frac{\operatorname{ad} \alpha}{\left.1-e^{-\mathrm{ad} \mathrm{\alpha} \alpha}\right)}\right.}=R C_{u}^{\alpha}+R C_{u}^{\alpha} / / \operatorname{ad}_{u}\left\{\delta \beta / / R C_{u}^{\alpha}\right\} .
$$

Now replacing $\alpha \rightarrow \gamma$ and $\delta \beta \rightarrow \delta \gamma / / \frac{1-e^{- \text {ad } \gamma}}{\operatorname{ad} \gamma}$, we get the equation for $\delta R C_{u}^{\gamma}$. The equation for δC_{U}^{γ} now follows by taking the variation of $C_{u}^{\gamma} / / R C_{u}^{-\gamma}=I d$.

$$
\text { Substitute } \delta \alpha k \beta \text { into } R C_{u}^{b c h(\alpha, \beta)}=R C_{u}^{\alpha} \| R C_{u}^{\beta / / K C_{4}^{\alpha}} \text {, }
$$

get
seams stuck.

