Is there a basis-independent version of J_0?

Q. If L_n is the $(n-1)!$-dimensional rep. of S_n, what's $L_n \otimes_{S_n} L_n^2$?

Is it $(n-1)!$-dimensional w/ basis as above?

By thickening, get a map into $A_n \otimes_{S_n} A_n$:
I should write the J-story in the language of connections and holonomies!

"multi-deck shuffles"