Cheat Sheet: Inflation

April-29-13 9:12 AM

We can now define⁷ a map δ_0 , defined on v-knots and taking values in ribbon tori in \mathbb{R}^4 : given (Σ, γ) , embedd Σ arbitrarily in $\mathbb{R}^3_{xyz} \subset \mathbb{R}^4$. We say that a normal vector to Σ in \mathbb{R}^4 is "near unit" if its norm is between $1 - \epsilon$ and $1 + \epsilon$. The near-unit normal bundle of Σ has as fiber an annulus that can be identified with $[-\epsilon, \epsilon] \times S^1$ (first trivialize it using its positivet-direction section), and hence the near-unit normal bundle of Σ defines an embedding of

 $\Sigma \times [-\epsilon, \epsilon] \times S^1$ into \mathbb{R}^4 . On the other hand, γ is embedded in $\Sigma \times [-\epsilon, \epsilon]$ so $\gamma \times S^1$ is embedded in $\Sigma \times [-\epsilon, \epsilon] \times S^1$, and we can let $\delta_0(\Sigma, \gamma)$ be the composition

$$\gamma \times S^1 \hookrightarrow \Sigma \times [-\epsilon,\epsilon] \times S^1 \hookrightarrow \mathbb{R}^4,$$

which is a torus in \mathbb{R}^4 . We leave it to the reader to verify that $\delta_0(\Sigma, \gamma)$ is ribbon, that it is independent of the choices made within its construction, that it is invariant under isotopies of γ and under tearing and puncturing, that it is also invariant under the "overcrossing commute" relation of Figure 3, and that it is equivalent to Satoh's tubing map.

The map δ_0 has straightforward generalizations to v-links, v-tangles, framed-v-links, vknotted-graphs, etc.

Winter

Tube(K)=-Tube(K)*

-Tube(K)=Tube(-K)

Tube(K) = Tube (-K1)

For a surface-knot F, we use the notations -F and F^* for the orientationreversed and the mirror-imaged surface-knots of F respectively.