Khovanov Homology for Alternating Tangles

Theorem 1. If T is non-split alternating, $Kh(T)$ is coherently diagonal.

Theorem 2. If $\{\Omega_i\}$ are coherently diagonal and D is alternating planar, then $D(\Omega_1, \Omega_2, \ldots)$ is coherently diagonal.

Rotation Numbers. $R(\alpha) := \frac{1}{2} \left(\left| a - h_\alpha \right|_{2k} - \frac{1}{2} \right)$, where $R(\alpha)$ and $R(\gamma) = +1$ and $R(\beta) = -1$.

Also, $R(\alpha \{q\}) := R(\alpha) + q$. Examples:

- $R(\alpha) = \frac{1}{6} - \frac{1}{2} = -\frac{1}{3}$
- $R(\beta) = \frac{1}{2} - \frac{1}{2} = 0$
- $R(\gamma) = \frac{5}{6} - \frac{1}{2} = \frac{1}{3}$

Alternating Planar Algebra. All input/output boundaries are connected via the arcs, “in” and “out” strands alternate on all boundaries. A “rotation number” R_D can be defined.

Proposition 3.2. $R(D(\sigma_1, \ldots, \sigma_d)) = R_D + \sum_{i=1}^{d} R(\sigma_i)$.

The Basic Operations.

- $R_D = +\frac{1}{2}$
- $R_D = 0$

Diagonal Complexes. $\Omega: \cdots \to \sigma_j^+ \cdots \to \sigma_j^{-1} \cdots$ such that $2r = R(\sigma_j)$ is a constant $C(\Omega)$.

Coherently Diagonal Complexes. All partial closures can be reduced to diagonal, with $C(U(\Omega)) = C(\Omega) - C(D_U)$.

“Main” Lemma 6.2. The pairing $D(\Omega_1, \Omega_2)$ via an arc diagram that has at least one boundary arc coming from its first input of a coherently diagonal complex Ω_1 and a diagonal complex Ω_2 is coherently diagonal.

Gravity and Smoothing.

Delooping and Gaussian Elimination.

...
A. have a reduced form which is diagonal.

Add: \(\phi, \theta, \lambda \) are coherently diagonal.

Proof summary is Lemma 6.2 & Thm. 2.