Dror Bar-Natan: Pensieve: 2013-04: AltTan @ Tuesday 2nd April, 2013, 11:58am http://drorbn.net/AcademicPensieve/2013-04/AltTan/ Khovanov Homology for Alternating Tangles

Rotation Numbers. $R(\alpha) := \frac{1}{2k} [t_{\alpha} - h_{\alpha}]_{2k} - \frac{1}{2}$, where **Theorem 1.** If T is non-split alternating, Kh(T) is coher- $[j]_{2k} := \begin{cases} j & \text{if } j > 0 \\ j+2k & \text{if } j < 0 \end{cases}$, and $R(\circlearrowleft) = +1$ and $R(\circlearrowleft) = -1$ ently diagonal.

Theorem 2. If $\{\Omega_i\}$ are coherently diagonal and D is alter-

Also, $R(\alpha\{q\}) := R(\alpha) + q$. Examples:

$$R(\alpha) = \frac{1}{6} - \frac{1}{2} = -\frac{1}{3}$$

$$R(\beta) = \frac{1}{2} - \frac{1}{2} = 0$$

$$R(\gamma) = \frac{5}{6} - \frac{1}{2} = \frac{1}{3}$$

Alternating Planar Algebra. put/output boundaries are connected via the arcs, "in" and "out" strands alternate on all $\stackrel{\smile}{\rightarrow}$ boundaries. A "rotation number" R_D can be defined.

The Basic Operations.

Diagonal Complexes. $\Omega \colon \cdots o \left| \sigma_j^r \right|$ $\rightarrow \left[\sigma_{j}^{r+1}\right] \rightarrow \cdots$ such that $2r - R(\sigma_i^r)$ is a constant $C(\Omega)$.

Coherently Diagonal Complexes. All partial closures Gravity and Smoothings. can be reduced to diagonal, with $C(U(\Omega)) = C(\Omega) - C(D_U)$.

"Main" Lemma 6.2. The pairing $D(\Omega_1, \Omega_2)$ via an arc diagram that has at least one boundary arc coming from its first input of a coherently diagonal complex Ω_1 and a diagonal complex Ω_2 is coherently diagonal.

Delooping and Gaussian Elimination.

nating planar, then $D(\Omega_1, \Omega_2, ...)$ is coherently diagonal.

A. have a reduced form which is diagonal.
Add: 17 & 2 " are coherently diagonal.
Proof summarios of Lemma 6,2 l Thm 2
·