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BF Theory, and an Ultimate Alexander Invariant

o An ansatz for a “homomorphic” invarlant: computahble,

related to finite-type and to BF. I'angle concatenations — my & wa.
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I'he Meta-Group-Action M. Let T be a set of “tail labels”
“halloon colours™), and H a set of “head labels” {“hoop
olours” ). Let FL = FL{T) and 1A = FA(T) be the (com-
leted graded) free Lie and free associative algebras on gend
o & injects u-Knots into K" (likely n-tangles too). rators 1 and let CW = CW(T) be the (completed graded)
o & maps v/w-tangles map to K the kernel contains Reivector space of evelic words on T, so there’s tr: 14—+ CW.
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Properties.

o Associativities: m® [ m = mp© J me, for m = tm, hm.
o Action axiom f: twmll” [ tha™ = tha™" ,.?' that* [/ tm?",
o Action axiom fi: hmc’ Jthas = that ) tha¥ ) hin". — =
o SD Product: dm™ = tha™ J ti™" s associ .
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I'he Meta-Cocyele J. Set J,(A) := J(1) where

o J(0) =0, A=A OO,
cfof'\/!a{ dJ(s)
ds

wmd where divy, A= tr(ue, (A)), ou(v) = Gp, oA, Aa]) =
biAD o Az) = el Aa)ou(Ay) and ¢ is the inclusion FL — FA:
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I'he 3 quotient, 2.

Let 2 = Q{ey}uer] and Lg = R@ 1

with central £ and with [, v] = ¢ v —epu for w,v € T Ther
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and write o, as a matrix. (-1! :

Repackaging.

‘4 caleulus”.

I'he Tnvariant C.
m invariant of u/v/w-tangles, and if the topologists will ded
liver a “Reidemeister” theorem, it is well defined on K,
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Ihearem. ¢ is (the log of) a universal finite type invariant (s
wmomorphic expansion) of w-tangles.
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lensorial Interpretation.
dgebra (any!). Then there's 7
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Let g be a finite dimensional Lie tm

cand BF Theory, Let A denote a g-connection
m ST with curvature #4, and B a g*-valued 2-
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ILoose Conjecture.

he ribbon condition arise? Or if it doesn’t, could it be that
K can be generalized??
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Jn long knots, w is the Alexander polynomial!
Vhy bother? (1)
invariant: Manifestly polynomial (time and]
kize) extension of the (multivariable) Alexan-==
ler polvnomial to tangles, Every step of the

An ultimate  Alexander

I'he 5 quotient, 1.
ILic algebra.

o Arises when reducing by relations satisfied by the weight
kvstem of the Alexander polynomial,

s Arises when g is the 2D non-Abelian

" "Ciod created the knots, all else in
topology is the work of mortals."
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: Why bother?

omputation is the computation of the in-
rariant of some topological thing (no fishy
wanssian elimination!). If there should be an Alerander in
variant to have an algebraic categorifeation, it is this one
Bee also wed)
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(2) Related to A-T, K-V, and E-K, shouls
have vast generalization beyond w-knots and the Alexander
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solynomial. See also weBwko, weFeaen, weFswiss
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