$$
\operatorname{Pu}(t \lambda)=\int_{0}^{t} d s\left[\operatorname{div}_{u}\left(\lambda / / C C_{u}^{s \lambda}\right) / / u \rightarrow C_{u}^{-s \lambda}\right]
$$

Hence it would be lovely to simplify

$$
\operatorname{div}_{u}\left(\theta / / C C_{4}^{\lambda}\right) / / C_{u}^{-\lambda}
$$

$\theta:$

could it be

$$
\operatorname{div}_{u}\left(\frac{a d \lambda}{1-e^{a d \lambda}} \theta\right) \quad c_{0}
$$

$$
\left.\operatorname{div} \lim _{n=0}^{\infty}\left[\phi \mapsto l^{a d \lambda}(u) / / \operatorname{der}(u \rightarrow[\phi, u])\right]^{n}\right)(\theta)
$$

Even if - it may move efficient in a hard-to-qualify way, but it isn't simpler. (\because

Maybe "understanding P " is the thing to do?

