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Meta—Groups, Meta—Bicrossed—Products, and
Dror Bar—Natan at the Newton Institute, January 2013,

the Alexander Polynomial, |

http://uwe.math. toronto. edu/- drorbn/Talks,/Newton- 1301

IAbstract. 1 will define “meta-gronps™ and explain how one sperifi
Imeta-group, which in itsell is a “meta-bicrossed-product™, gives rise
o an “ultimate Alexander invariant™ of tangles, that contains the
Alexander polynomial (multivariable, if you wish), has extremely

ingful way, and is least-wasteful in a computational sense, If yor
selieve in categorification, that’s a wonderful playground.

i in a munber of other places, and I plan to repeat it a gooc

further mumber of places. Though here at the Newton Institute |
plan to make the talk a bit longer, giving me more time to give
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ood composition properties, is evalnated in a topologically mean
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sairs Y = (g, gF) € G2, map them \/ Z \/17/:1
This will be a repeat of a talk T gave in Regina in Angust 201900 xings and “multiply along”, so that AN e
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kome further fun examples of meta-structures, and perhaps [ will v
Tom the andience that these meta-structures should really \{—v-\’

work 15 closely related to work by Le Dimet (Comd

IAlexander Issues. Y
o Quick to compute, but computation departs from topology|
» Extends to tangles, but at an exponential cost.

® Hard to categorify.
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This Fails! R2 implies that gfgF = ¢ = gFgT and then R
implies that g and g commute, so the result is a simple
ounting invariant.

(A Group Computer. Given (7, can store group elements and|
perform operations on them:
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IAlso has S, for inversion, e, for unit insertion. d, for register deleq
tion, A7 for element cloning, py for renamings, and (Dy, D) —
1Dy 1L Dy for merging, and many obvions composition axioms relat

ling those, P={r:gry:q}=P={dPUu{d.P}

A Meta-Group. Is a similar

computer”, only its interna
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kiructure is unknown to us. Namely it is a collection of sets
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yine finear pr TS
. -meta example, Gy = G7.
Gy i= My (Z), with simultaneous row and

01

olumn opfrations, and “block diagonal” merges. Here if
v a b v Y (g s 3 (- .
P = yioe “,) then d, P = (r : a) and d, P = (y : d) sc

{d,P}u{d, P} = (; :r} :) # P. So this (i is truly meta,

A Standard Alex
(10 + 1)~ 1, make an n > nomatrix as below, delete one row
land one column, and compute the determinant:

A

1 0 0 0 0 X-1 0 -X
-1 X 0 0 0 0 1-X ©
0 -1 X 0 1-% © 0 0
X¥-1 0 -Xx 1 0 0 0 0
D I-% © -1 % o p o |UI1::7.1::71] // Dey
0 0 0 0 -x 1 0 x-1
0 0 1-% 0 0o -1 x 0
0 0 0 x-1 0 o -x 1

Fl+ax-8x2+11%° -Bx 4 qutoxf

der Formula. Label the ares | thronebClaim. From a meta-gronp 6 and YB3 elements % € Go we

an constriet a knot /tangle invariant.

Bicrossed Products. If ¢ = HT is a group presented as &
product of two of its subgroups, with # N7 = {e}, then alsc
7= TH and @ is determined by H, T, and the “swap™ maj
sw : (1 h) s (B, 1') defined by th = h't’. The map su
satisfies (1) and (2) below; conversely, if sw : T x H — H =1
katisfies (1) and (2) (+ lesser conditions), then (3) defines
roup structure on = ', the “bicrossed produet™.

B : 3 13
: gl i=swpa ftm}? el
""""""" B (Rt = (B b)) ts) = hats
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1.} indexed by all finite sets ., and a collection of operar 7
tions m2, S, ep, dy, Aj:_,r (sometimes), g . satisfying]
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| mean business!

A Meta-Bicrossed-Product is a collection of sets 8(n, ) anc
ati s Ty ZY aatit i - Y o) Psimp - Yactor: SetAttributes(fCollect, Listable];
operations fmz", hmz" and swy, (and lesser ones), such thatfzy i S
m and hm are “associative” and (1) and (2) hold (4 lesser| cottestls v, cottact[s, c, ssimp] )¢
5 < Bromm(Bls , 41) :» Module[{es, ks, ¥}, e Sh V3 4. by = 0:
conditions). A meta-bicrossed-product defines a meta-groupy - - vaiofcases st 41, &+, Iatiniey]]) i R R D
o+ o i e m P hs + Union[Cases[Bfv, 4], h, s s, Infinity|]; .
with G, := 8(7,7) and gm as in (3). W+ Outer[38iwp(Coateiciant(d, he tucl] &, hs, ta1)
[Example. Take 8(n,7) = M:x,(Z) with row operations foryy =l =< o e
the tails, column operations for the heads, and a trivial swap *etsssremral:

Brocm{eles | :r ales /. 4.3 1 Sroxm{#]:
3 Calenlus. Let 3(n,7) be

Format (s 5, Standardfors) :« AForm[7):

{8 = B[w, Sum[ai05.3 ts by, {i, {1, 2, 3}}, {3, {4, 5}}]],
tlan ap - |hi €n ti €7, and w and ks
A (B /7 tmyzey /1 swia) = (B // swaa // swia // tmizaa)}
ta|as axm - l‘lw «; are rational fune-

tions in a variable X (@ he: Bs (1) Some
t; @y @ I
{ 1 014 s 'I‘rue} B :
ty apy ags |’ testing
Uit £ a3y azs
-

w
— a ol g {Rmsy Rmgz Rpyg // giygy // GWzs,z // 9Wzes,
1 . 2
3 \V"/ Rpg, Rmpq Rmys // giyg,y // QWgs,s // Gizels}
7y 1 hy hy 1 hy hz
{ tz -2X 0 | |tz -2 0 }
wlhy hy --- A Fia =
oY - [ he By = Vt N, a2 _aex | |y, 2x s
LR | 3~ < | 8+ <(})3 2 x X X
e Y lat s X{ ... divide and conquer!
W | hy oo we | hy 8 = Rmyz 3 Rmz7 Rmgs Rig,11 RP16,5s RPg,13 RP14,5 RP10,15 817
swih: tala B o fa(l+ (m/e) B(1+ ( ey o ff1 m me bs b ks huy his s
L
P ~/e 5—~B/e tz 0 0 0 L 0 0 0 0
tg O 0 0 0 0 -=LX 9 0
A i X
where € := 1+ a and (¢) := )", ¢;, and let e b 2 5 o & S % B
tg 0 -2X 0 0 0 0 0 0
R? R™ . tio Q 0 0 0 0 0 0 -1+X%
b - ty, -AX o 0 0 0 0 0 0
ty 0 0 0 0 -1+X O 0 0
Theorem. Z7 is a tangle invariant (and more). Restricted tol tis 0 0 -1+x 0 0 0 0 0
knots, the w part is the Alexander polynomial. On braids, it I 817, cont.
is equivalent to the Buran representation. A variant for links 1 by hyy hys hys
ontains the multivariable Alexander polynomial. ty - LEELLE L (C1ax) (1-X437) (-1+%) (1-X+%7) -14X
IWhy Happy? e Applications to w-knots. t1z 3 & 2 0
o Evervthing that I know about the Alexander polynomiall| ¢, 14% TR AR, 0
:an be expressed cleanly in this language (even if without|| 0

proof), except HF, but including genus, ribbonness, cablingf -~ ---=---------------~--~--~ -~ - --- - - - - - - - -+
-knots, knotted graphs, ete., and there’s potential for vast B /7 gmye,y, {k, 11, 16}]1; B

Jumes

lweneralizations. 3 Waddel ( _1-ax-8x2-11x3.8x4_4x5.x6 l
@ The least wasteful “Alexander for tangles™ I'm aware of. E—— © .

@ Every step along the computation is the invariant of someHA Partial To Do List. 1. Where does it more [
thing. simply come from? C

o I'its on one sheet. inclnding implementation & propaganda2. Remove all the denominators.

T, ... . Understand lmk.s ’ L., MWin~Cen Ju, 19AC
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[Further meta-monoids. IT (and variants), A (and quotients),>- How do determinants arise # this context? iy

: )

9 s e
Further meta-bicrossed-products. II (and variants), Z (and™ Find the “reality (on(lmou 2 & ’\-({C
uotients), Mg, M, KM, Ko, . 6. Do some “Algebraic Knot Theory™
Meta-Lie-algebras. A (and quotients), S, ... 7. Categorify. . .
Mobaclic:biakechras j find quotieaits) 8. Do the same in other natural quotients of the
IMeta-Lie-bialgebras. ients), ...

8 1 v/w-story.

ribbon

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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