The h-action equation:

$$
\mu / / h m_{z}^{x y} / / \operatorname{tha}^{u z}=\mu / / \operatorname{thc}^{u x} / / \text { than } a^{u y} / / \operatorname{hm}_{z}^{x y}
$$

The prior spice setup:

$$
(\lambda, w) / / \text { than }^{4 x}:=\left(\lambda, w+P_{u}\left(\lambda_{x}\right)\right) / / C C_{u}^{\lambda x}
$$

Meaning,

$$
\begin{aligned}
& P_{u}(\lambda) / / C C_{u}^{\lambda}=J_{u}(\lambda), \text { or } J_{u}(\lambda) / / C_{u}^{-\lambda}=P_{u}(\lambda) . \\
& \frac{d}{d \epsilon} P_{0} P_{u}(\epsilon \lambda)=\left.\frac{d}{d \epsilon}\right|_{0}\left(J_{u}(\epsilon \lambda) / / C C_{u}^{-\epsilon \lambda}\right)=\operatorname{div}_{u} \lambda
\end{aligned}
$$

The h-action equation becomes:

$$
\begin{aligned}
& P_{u}\left(b c h\left(\lambda_{x}, \lambda_{y}\right)\right) / / C C_{u}^{b c h\left(\lambda_{x}, \lambda_{y}\right)} \\
& =P_{u}\left(\lambda_{x}\right) / / C C_{u}^{\lambda_{x}} / / C C_{u}^{\lambda_{y}} / / C C_{u}^{\lambda_{x}}+P_{u}\left(\lambda_{y} / / C C_{u}^{\lambda_{x}}\right) / / C C_{u}^{\lambda_{y}} / / C C_{u}^{\lambda_{x}}
\end{aligned}
$$

cancelling the $C C_{u}^{\lambda_{y}} / / C C_{u}^{\lambda_{x}}$ everywhere gives

$$
P_{u}\left(b c h\left(\lambda_{x}, \lambda_{y}\right)\right) / / C C_{u}^{\lambda_{x}}=P_{u}\left(\lambda_{x}\right) / / C C_{u}^{\lambda_{x}}+P_{u}\left(\lambda_{y} / / C C_{u}^{\lambda_{x}}\right)
$$

Using $\lambda_{x}=s \lambda, \lambda_{y}=\epsilon \lambda$, get Cf. "crossed homomo phis s"

$$
P((s+\epsilon) \lambda) / / C C_{u}^{s \lambda}=P(s \lambda) / / C C_{u}^{s \lambda}+P\left(\epsilon \lambda / / C C_{u}^{s \lambda}\right)
$$

Now take an infinitesimal \in to get

$$
\left(\frac{d}{d S} P(s)\right) / / C c_{u}^{s \lambda}=\operatorname{di}_{u}\left(\lambda / / C c_{u}^{s \lambda}\right)
$$

and $P(0)=0$, so

$$
\operatorname{P} u(t \lambda)=\int_{0}^{t} d s\left[\operatorname{div}_{u}\left(\lambda / / C C_{u}^{s \lambda}\right) / / u \rightarrow C_{u}^{-s \lambda}\right]
$$

