$t_{n} = \langle t^{ij} \rangle / [t^{ij}, t^{kl}] = 0$ $[t^{ij}, t^{ik} + t^{jk}] = 0$ $S_{n} \wedge characta 2$ decomposition 2Peter's question January-22-13 9:01 AM Dotsenko: The answer For the Koszul dual is i. paper by Felder-Veselov:

Coxeter group actions on the complement of hyperplanes and special involutions

<u>Giovanni Felder</u> (ETH Zurich), <u>Alexander P. Veselov</u> (Loughborough University and Landau Institute) (Submitted on 12 Nov 2003 (v1), last revised 6 Feb 2004 (this version, v2))

We consider both standard and twisted action of a (real) Coxeter group G on the complement M_G to the complexified reflection hyperplanes by combining the reflections with complex conjugation. We introduce a natural geometric class of special involutions in G and give explicit formulae which describe both actions on the total cohomology H(M_G,C) in terms of these involutions. As a corollary we prove that the corresponding twisted representation is regular only for the symmetric group S_n, the Weyl groups of type D_{2m+1}, E_6 and dihedral groups I_2 (2k+1) and that the standard action has no anti-invariants. We discuss also the relations with the cohomology of generalised braid groups.

Pasted from <<u>http://arxiv.org/abs/math/0311190</u>>