NCGE Talk post-Mortem
January 24-13 7:05 AM

The Problem. Let $G = \langle y_1, \ldots, y_n \rangle$ be a subgroup of S_n, with $n = O(100)$. Before you die, understand G:
2. Given $\sigma \in S_n$, decide if $\sigma \in G$.
3. Write a $\sigma \in G$ in terms of y_1, \ldots, y_n.
4. Produce random elements of G.

The Complementary Analog. Let $V = \text{span}(v_1, \ldots, v_n)$ be a subspace of \mathbb{R}^n. Before you die, understand V.

Solution: Gaussian Elimination. Prepare an empty table,

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

for v_1, \ldots, v_n in order. To feed a non-zero v_i find its pivotal position i.
1. If box i is empty, put v_i there.
2. If box i is occupied, find a combination δ of v and i, that eliminates the pivot, and feed δ.

Non-Commutative Gaussian Elimination
Prepare a mostly-empty table,

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

Feed v_1, \ldots, v_n in order. To feed a non-identity σ, find its pivotal position i and let $j := \sigma(i)$.
1. If box (i, j) is empty, put σ there.
2. If box (i, j) contains σ, feed $\sigma' := \sigma^{-1}\sigma$.

The Twist. When done, for every occupied (i, j) and (k, l), feed $\mu_i \mu_j \mu_k \mu_l$. Repeat until the table stops changing.

Claim 1. The process stops in our lifetimes, after at most $O(n^2)$ operations. Call the resulting table T.

Claim 2. Every $\sigma_i \in T$ in G.

Claim 3. Anything fed in T is now a monotone product in T:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

Homework Problem 1. Can you do cozes?

A Demo Program

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}\]

Change to match with program

Swap.

The Results

Table: [Feed[1], \{1 \rightarrow Count[Range[n]]\}, \{1 \rightarrow Feed[1] \rightarrow Cycle}\}, \{1, 0, 6\}]

In limit:

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}\]