Today an operad means "colored operad" - a pair \((C, p)\):
- \(C\) - a set of "colours"
- For each sequence \(C_1, \ldots, C_n; C\) (\(n \geq 0\)) a set \(p : C_1, \ldots, C_n; C\) of "operations" w/ std. axioms
 (has unit \(1_C\) for every \(c \in C\))

A \(p\)-algebra is \(\{A_n; c \in C\} w/\ldots\)

A category w/ objects = \(C\) is a "linear only" colored operad.

A map between colored operads \((C, p) \rightarrow (D, q)\) may change colours?

Labeled trees generate operads w/ colours = edges, \(\text{ops} \leftrightarrow \text{generated by verts}\).

There are plenty maps between these operads.
There is an embedding \(\Delta \rightarrow \mathcal{A} \) by

\[
\text{EnJ} \rightarrow \mathcal{A}
\]

Def. The category \(\text{set} \) of "dendroidal sets" is the category of set-valued presheafs on \(\mathcal{A} \):

\[
\text{set} = \text{sets}^{\mathcal{A}^\text{op}} = \hat{\mathcal{A}}
\]

more in video

"Dendroidal sets are a convenient category for taking nerves of operads, like simplicial sets are for nerves of categories."

"Dendroidal inner Kan complexes."

— me been outmathed.