$$
P_{u}\left(b c h\left(\lambda_{x}, \lambda_{y}\right)\right) / / C C_{u}^{\lambda_{x}}=P_{u}\left(\lambda_{x}\right) / / C C_{u}^{\lambda_{x}}+P_{u}\left(\lambda_{y} / / C c_{u}^{\lambda_{x}}\right)
$$

Becomes

$$
P_{u}\left(b c_{h}\left(\lambda_{x}, \lambda_{y}\right)=P_{u}\left(\lambda_{x}\right)+P_{u}\left(\lambda_{y} / / C_{u}^{\lambda_{x}}\right) / / C_{u}^{-\lambda_{x}}\right.
$$

Olobdizing the arguments \& letting $a \sim \lambda_{x}$

$$
\begin{aligned}
& \lambda_{y}=b / / u \rightarrow a^{-1} u a \text {, get } \\
& P_{u}\left(a\left(b / / u \rightarrow a^{-1} u a\right)\right)=p_{u}(a)+P_{u}(b) / / u \rightarrow a^{-1} u a
\end{aligned}
$$

weird.

