The Problem. Let $G = \langle g_1, \ldots, g_n \rangle$ be a subgroup of S_n with $n = O(100)$. Before you die, understand G:

1. Compute $|G|$.
2. Given $\sigma \in S_n$, decide if $\sigma \in G$.
3. Write a $\sigma \in G$ in terms of g_1, \ldots, g_n.
4. Produce random elements of G.

The Commutative Analog. Let $V = \text{span}(v_1, \ldots, v_n)$ be a subspace of \mathbb{R}^n. Before you die, understand V.

Solution: Gaussian Elimination. Prepare an empty table,

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

Feed v_1, \ldots, v_n in order. To feed a non-zero vector, find its pivotal position i.

1. If box i is empty, put v_i there.
2. If box i is occupied, find a combination v' of v and u_i that eliminates the pivot, and feed v'.

Non-Commutative Gaussian Elimination

Prepare a mostly-empty table,

\[
\begin{array}{cccccc}
1 & 1 \hspace{1cm} | \hspace{1cm} 1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

Feed g_1, \ldots, g_n in order. To feed a non-identity σ, find its pivotal position i and let $j := \sigma(i)$.

1. If box (i, j) is empty, put σ there.
2. If box (i, j) contains $\sigma_{i,j}$, feed σ' so that $\sigma' := \sigma_{i,j}^{-1} \sigma$.

The Twist. When done, for every occupied (i, j) and (k, l), feed $\sigma_{i,j} \sigma_{k,l}$. Repeat until the table stops changing.

Claim 1. The process stops in our lifetimes, after at most $O(n^6)$ operations. Call the resulting table T.

Claim 2. Every $\sigma_{i,j}$ in T is in G.

Claim 3. Anything fed in T is now a monotone product in T: if was fed $f \in M_1 := \langle \sigma_{1,j}, \sigma_{2,j}, \ldots, \sigma_{n,j} \rangle$; \forall i, j \geq i \& \sigma_{i,j} \in T").

Homework Problem 1: Can you do cosets?

Non-Commutative Gaussian Elimination and Rubik's Cube

\[
\begin{array}{cccccc}
1 & 1 \hspace{1cm} | \hspace{1cm} 1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

The Generators

\[
\begin{array}{cccccc}
1 & 1 \hspace{1cm} | \hspace{1cm} 1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

Space for a vector $u_4 \in V$, of the form $u_4 = (0, 0, 0, 1, \ldots, *)$: $1 := \text{“the pivot”}$.

Feed v_1, \ldots, v_n in order. To feed a non-zero vector, find its pivotal position i.

1. If box i is empty, put v_i there.
2. If box i is occupied, find a combination $v' \in V$ and u_i that eliminates the pivot, and feed v'.

Non-Commutative Gaussian Elimination

Prepare a mostly-empty table,

\[
\begin{array}{cccccc}
1 & 1 \hspace{1cm} | \hspace{1cm} 1 & 2 & 3 & 4 & \cdots & n-1 & n \\
\end{array}
\]

Feed g_1, \ldots, g_n in order. To feed a non-identity σ, find its pivotal position i and let $j := \sigma(i)$.

1. If box (i, j) is empty, put σ there.
2. If box (i, j) contains $\sigma_{i,j}$, feed $\sigma' := \sigma_{i,j}^{-1} \sigma$.

The Twist. When done, for every occupied (i, j) and (k, l), feed $\sigma_{i,j} \sigma_{k,l}$. Repeat until the table stops changing.

Claim 1. The process stops in our lifetimes, after at most $O(n^6)$ operations. Call the resulting table T.

Claim 2. Every $\sigma_{i,j}$ in T is in G.

Claim 3. Anything fed in T is now a monotone product in T: if was fed $f \in M_1 := \langle \sigma_{1,j}, \sigma_{2,j}, \ldots, \sigma_{n,j} \rangle$; \forall i, j \geq i \& \sigma_{i,j} \in T").

Homework Problem 1: Can you do cosets?
The Back Side

A homomorphism from S_4 to S_3:

A homomorphism from A_5, to the symmetry group of a dodecahedron, to A_6: