A factor is a $v N_{a}$ with trivial center $M \curvearrowright \Delta H^{\prime} \cap M^{\prime}=\left\{x \in B(H) \mid x_{m}-m x \quad \forall m \in M\right\}$ $Z(M)=M^{\prime} \cap M=\mathbb{C} 1$
3 types of factors:
+ape $I: \exists \min P^{r o j} \stackrel{\circ}{j} \in P(M) .\left[p M_{p} \cong \mathbb{C}_{p}\right]$

- if $M_{\text {is type }} I$, then $M \cong B(H)$
type II: Amin prod, but \exists finite prog. $\begin{gathered}p \text { fink e if } \\ 0 \neq 1 \leqslant p\end{gathered}$
$\Pi_{1}: 1$ is finite
In: 1 is infante.
type III: no fits prog. or 1 properly infare
Equivalent def of II. factor M_{i} a II-fecter if M is an - oo-din'l factor with $a_{n} \sigma$-wkly cont. racial state tr: $M \rightarrow \mathbb{C}$
Example of a II, factor: Γ a countable discrete group; it cots on $l^{2}(\Gamma)$:

$$
\begin{aligned}
& \left(u_{g} f\right)(h)=f\left(g^{-1} h\right) \quad u_{g} \delta_{h}=\delta_{g h} \\
& L \Gamma=\left\{u_{g}\right\}^{\prime \prime} \subseteq B\left(l^{2}(\Gamma)\right) \\
& \quad\left[u_{g}\right]_{h, k}=\left\langle u_{g} f_{k}, f_{h}\right\rangle=\delta_{g k, h}= \begin{cases}1 & k=h h^{-1} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Lg's are permutation matrices \& they
are "generalized Touplitt matrices"
If $\quad x \in L \Gamma, \quad x=\sum x_{g} U_{g}$

$$
\begin{aligned}
& \left(\sum x_{g} u_{g}\right)\left(\sum y_{h} u_{h}\right)=\sum_{g}\left(\sum_{h} x_{g h}-1 y_{h}\right) u_{g} \\
& \quad\left(\sum x_{g} u_{g}\right)^{*}=\sum \bar{x}_{g-1} u_{g} \\
& \operatorname{tr}(x)=x_{l} \\
& \operatorname{tr}\left(x^{*} x\right)=\sum_{g}\left|x_{g}\right|^{2}<\infty \text { so }\left(x_{g}\right) \in l^{2}(\Gamma)
\end{aligned}
$$

Fact: $L \Gamma=\left\{x \in l^{2}(\Gamma): x * F \in l^{2}(\Gamma) \quad \forall f \in l^{2}(\Gamma)\right\}$ When is LC a FI Factor? $^{\text {L }}$
Ans: Eff all conjugacy classes of Γ except the identity are infinite.
"ICC groups" Examples:i. Fin $n \geqslant 2$
2. S_{∞} : Finite permutations of \mathbb{N}.

The: If M is a II factor, Then

$$
\operatorname{tr}(P(M))=[0,1] \text {. }
$$

In the examples -

$$
\mathbb{F}_{n}: L \mathbb{Z} C L F_{2}, L \mathbb{Z}^{\cong} \simeq \infty(\pi, d \theta)
$$ any trace.

So If u is a transposition $\frac{1 \pm u}{2}$ is a projuction with trace $1 / 2$. By taking products k sums, get arbitrary dindic rationals.
Example $\quad R=\infty M_{2 \times 2}(\mathbb{C})$

