From Philippe Humbert's thesis, pages 30-31:

2.1 The Lie algebra $\mathfrak{t}_{1,n}$

We define the graded Lie algebra $\mathfrak{t}_{1,n}$, which has been introduced by Bezrukavnikov $\boxed{11}$ as the Lie algebra associated with the lower central series of the pure braid group of the torus.

Definition 2.1.1. Let $\mathfrak{t}_{1,n}$ be the graded Lie algebra presented by the degree one generators v_i (for any $v \in H_1$ and $i \in \{1, \ldots, n\}$), the degree two generators t_{ij} (for

any $i \neq j \in \{1, ..., n\}$), the linearity relation $(v + \lambda w)_i = v_i + \lambda w_i$ and the following relations (2.1.1 2.1.3) for any $v, w \in H_1$ and any distinct $i, j, k \in \{1, ..., n\}$.

$$[v_i, w_j] = \langle v, w \rangle t_{ij}, \qquad (2.1.1)$$

$$[v_i, t_{jk}] = 0,$$
 (2.1.2)

$$[x_i, y_i] = -\sum_{j \neq i} t_{ij}.$$
 (2.1.3)

Lemma 2.1.1. The relations of Definition [2.1.1] imply that $\sum_{j=1}^{n} v_j$ is central in $\mathfrak{t}_{1,n}$, and

$$t_{ij} = t_{ji}, \quad [v_i + v_j, t_{ij}] = 0,$$

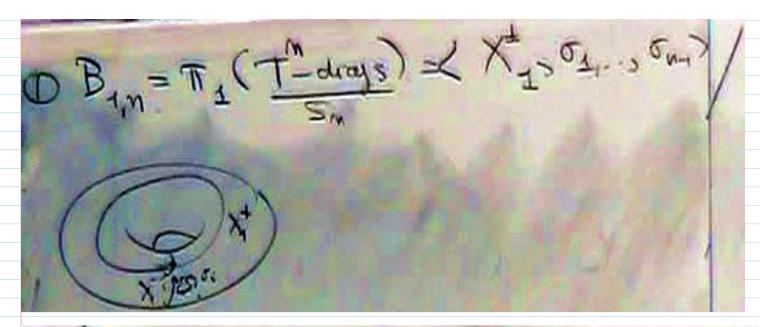
as well as the infinitesimal pure braids relations

$$[t_{ij}, t_{kl}] = 0$$
 and $[t_{ij}, t_{ik} + t_{kj}] = 0$.

In particular, there is a Lie algebra morphism $\mathfrak{t}_n \to \mathfrak{t}_{1,n}$ sending $t_{ij} \in \mathfrak{t}_n$ to $t_{ij} \in \mathfrak{t}_{1,n}$. This morphism multiplies the degree by two.

Proof. Relations (2.1.3) and (2.1.1) imply $[x_i, \sum_{j=1}^n y_j] = 0$, and from (2.1.1), we also have $[y_i, \sum_{j=1}^n y_j] = 0$. Since the x_i 's and the y_i 's generate $\mathfrak{t}_{1,n}$, it follows that $\sum_{j=1}^n y_j$ is central. Similarly, we show that $\sum_{j=1}^n x_j$ is central. Hence, $\sum_{j=1}^n v_j$ is central for any v. The relation $t_{ij} = t_{ji}$ follows from $t_{ij} = [x_i, y_j] = -[y_j, x_i] = -\langle y, x \rangle t_{ji} = t_{ji}$. Using (2.1.2), we have $[v_i + v_j, t_{ij}] = [\sum_{s=1}^n v_s, t_{ij}] = 0$ and $[t_{ij}, t_{kl}] = [t_{ij}, [x_k, y_l]] = 0$. Last, we have $[t_{ij}, t_{ik} + t_{kj}] = [t_{ij}, [x_i, y_k] + [x_j, y_k]] = [t_{ij}, [x_i + x_j, y_k]] = -[x_i + x_j, [y_k, t_{ij}]] - [y_k, [t_{ij}, x_i + x_j]] = 0$.

From Enriquez' June 2010 talk in Montpellier, http://drorbn.net/dbnvp/Enriquez-1006.php:



$$(x_{1}^{+}, x_{2}^{+}) = (x_{1}^{+}, x_{2}^{+})$$

$$(x_{1}^{+}, x_{2}^{+}) = (x_{1}^{+}, x_{2}^{+})$$

$$(x_{1}^{+}, x_{2}^{+}) = 0 \Rightarrow 1$$

$$(x_{1}^{+}, -x_{n}^{+}) = 0 \Rightarrow 1$$