2 LOTs and higher ribbon knots

A labelled oriented tree (LOT) is a tree Γ, with vertex set $V = V(\Gamma)$, edge set $E = E(\Gamma)$, and initial and terminal vertex maps $i, \tau: E \to V$, together with an additional map $\lambda: E \to V$. For any edge e of Γ, $\lambda(e)$ is called the label of e. In general, one can consider LOTs of any cardinality, but for the purposes of the present paper, every LOT will be assumed to be finite.

To any LOT Γ we associate a presentation

$$\mathcal{P} = \mathcal{P}(\Gamma) : \langle V(\Gamma) \mid i(e)\lambda(e) = \lambda(e)\tau(e) \rangle$$

of a group $G = G(\Gamma)$, and hence also a 2-complex $K = K(\Gamma)$ modelled on \mathcal{P}. The 2-complex K is a spine of a ribbon disk complement $D^4 \setminus k(D^2)$ [7], that is the complement of an embedded 2-disk in D^4, such that the radial function on D^4 composed with the embedding k is a Morse function on D^2 with no local maximum. Conversely, any ribbon disk complement has a 2-dimensional spine of the form $K(\Gamma)$ for some LOT Γ.

"LOT groups & higher ribbon knot groups are precisely the same thing."

Can/should be generalized to forests, "LOT groups".