Balloons and Hoops and their Universal Finite-Type Invariant,
BF Theory, and an Ultimate Alexander Invariant

dimensional loops. Knotted Balloons and Hoops (KBH) in 4-space dimensional loops. Knotted Balloons and Hoops (KBH) in 4 -spac eels" ("balloon colours"), H a set of "head labels" ("hoop
behave much like the first and second fundamental groups of a colours"), and let $\left\{h_{x}\right\}_{x \in H}$ be a set of formal symbols topological space - hoops can be composed like in π_{1}, balloons like Let $F L=F L(T)$ and $F A=F A(T)$ be the (graded) free in π_{2}, and hoops "act" on balloons as π_{1} acts on π_{2}. We will Lie and free associative algebras on generators T and let observe that ordinary knots and tangles in 3-space map into $\mathrm{KBH} C W=C W(T)$ be the (graded) vector space of cyclic words in 4-space and become amalgams of both balloons and hoops. We give an ansatz for a tree and wheel (that is, free-Lie and cyclic on T, so there's $\operatorname{tr}: F A \rightarrow C W$, and both $F A$ and $C W$ are word) -valued invariant Z of KBHs in terms of the said compo-FL-modules. Let sitions and action and we explain its relationship with finite type invariants. We speculate that Z is a complete evaluation of the A BF topological quantum field theory in 4D, though we are not sure
what that means. We show that a certain "reduction and repackaging" of Z is an "ultimate Alexander invariant" that contains the Alexander polynomial (multivariable, if you wish), has extremely rood composition properties, is evaluated in a topologically mean-(ingful way, and is least-wasteful in a computational sense. If youlWith μ believe in categorification, here's a wonderful playground.

Example.

- u-Tangles inject into $\mathcal{K}^{b h}$.
- In fact, n-component v / w-tangles map into $\mathcal{K}^{b h}(n, n)$ and we have a conjectural understanding of $\mathcal{K}^{b h}$ in these terms.

Meta-Group-Action. If X is a space, $\pi_{1}(X)$ is a group, $\pi_{2}(X)$ is an Abelian group, and π_{1} acts on $\pi_{2} \cdot K=$

prop tics: 1. two associt fart i, 2 the "mlta-actions

$t m_{w}^{u v}: \mu \mapsto \mu / .(u, v \mapsto w)$,
$h m_{z}^{x y}: \mu \mapsto\left(\omega,\left(\ldots, \widehat{\lambda_{x}}, \widehat{\lambda_{y}}, \ldots, \operatorname{bch}\left(\lambda_{x}, \lambda_{y}\right)_{z}\right)\right)$ $h t a^{x u}: \mu \mapsto \underbrace{\xi \mu / / .\left(u \mapsto e^{\text {ad } \lambda_{x}}(\bar{u})\right)\langle(\bar{u} \mapsto y)\}}_{\left.\mu / / C C_{*}^{\lambda}\right)}+\underbrace{\left(J_{u}(\lambda /), 0\right)}_{\text {the " } J \text {-spice" }}$
The £sprion Meta-Cocycle J I/et $J_{u}(\lambda):=J(1)$ where

$$
\begin{aligned}
& \text { Tire Meta-CocycleJ I/et } J_{u}(\lambda):=J(1) \text { where } \\
& J(0)=\underbrace{\lambda_{s}=e C_{u}^{u}(\lambda), \lambda / / C C_{u}} \\
& \frac{d J(s)}{d s}=\left(J(s) / / \operatorname{der}\left(u \mapsto\left[\lambda_{s}, u\right]\right)\right)+\operatorname{div}_{u} \lambda_{s} .
\end{aligned}
$$

Claim

and hence tm, hon, ha form a metn-grap-action.

$$
\text { Also further annotations on July } 27 \text { version. }
$$

Get beta-formulas from 2012-04/nb/Foundations.pdf $\sqrt{ }$

Complete all Lie algebras! V

