Recover the abstract 2

Balloons and Hoops and their Universal Finite—Type Invariant,

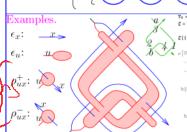
BF Theory, and an Ultimate Alexander Invariant

Dror Bar-Natan in Hamburg, August 2012 http://www.math.toronto.edu/~drorbn/Talks/Hamburg=1208/

cheme. • Balloons and hoops in \mathbb{R}^4 , operations and relations The Meta-Group-Action M. with 3D.

- type and to BF.
- Reduction to an "ultimate Alexander invariant".

 $^{bh}(m,n).$ balloons $\frac{10000}{\text{embeddings}} > \mathbb{R}^4$



To = Rm[3, a] Rp[b, 2] Rp[1, 4]; C = T₀ // dm[1, 2, 1] // dm[b, 4, dm[a, 1, a] // dm[a, 3, a];

Let T be a set of "tail labels" ("balloon colours"), H a set of "head labels" ("hoop An ansatz for an invariant: computable, related to finite colours"), and let $\{h_x\}_{x\in H}$ be a set of formal symbols. Let FL = FL(T) and FA = FA(T) be the (completed graded) free Lie and free associative algebras on generators T and let CW = CW(T) be the (completed graded) vector space of cyclic words on T, so there's tr : $FA \rightarrow CW$, and both FAand CW are FL-modules. Let $M(T,H):=\left\{\mu=\left(\omega,\bar{\lambda}=(\lambda_x)_{x\in V}\right):\ \omega\in CW,\ \lambda_x\in FL\right\}$

 $= \left\{ \left(\begin{array}{c} u & v \\ \vdots & v \end{array}, \begin{array}{c} u & v \\ \vdots & v \end{array}, \begin{array}{c} v \\ \vdots & v \end{array}, \begin{array}{c} v \\ \vdots & v \end{array} \right) \dots \right. \right\}$

Operations. Set $(\omega_1, \bar{\lambda}_1)(\omega_2, \bar{\lambda}_2) := (\omega_1 + \omega_2, (\bar{\lambda}_1, \bar{\lambda}_2))$ and with $\mu = (\omega, \bar{\lambda})$ define

 $tm_w^{uv}: \mu \mapsto \mu /\!\!/ (u, v \mapsto w),$

$$hm_z^{xy}: \mu \mapsto \left(\omega, \left(\dots, \widehat{\lambda_x}, \widehat{\lambda_y}, \dots, \operatorname{bch}(\lambda_x, \lambda_y)_z\right)\right)$$

 $hta^{xu}: \mu \mapsto \underbrace{\mu /\!\!/\!\!/\!\!/}_{\text{"stable apply"}} (u \mapsto e^{\operatorname{ad} \lambda_x}(\bar{u})) /\!\!/ (\bar{u} \mapsto u) + \underbrace{(J_u(\lambda_x), 0)}_{\text{the "J-spice"}}$

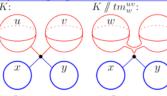
u-Knots inject into \mathcal{K}^{bh} (likely u-tangles too).

In fact, n-component v/w-tangles map onto $\mathcal{K}^{bh}(n,n)$; the kernel contains Reidemeister moves and the "overcrossings commute" relation, and conjecturally, that's all.

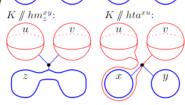
makes sense! \mathcal{O}^{\prime}

Meta-Group-Action. If X is a space, $\pi_1(X)$ is a group, $\pi_2(X)$ is an Abelian group, and π_1 acts on π_2 .

Connected

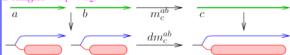


"//" is newspeak "apply an operator" and for "composition left o right")

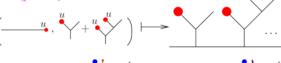


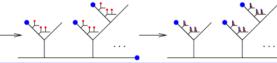
Properties

- Associativities: $m_x^{xy} / m_z^{xz} = m_y^{yz} / m_x^{xy}$, for m = tm, hm.
- Action axiom t: $tm_w^{xy} /\!\!/ hta^{xw} = hta^{xu} /\!\!/ hta^{xv} /\!\!/ tm_w^{uv}$,
 Action axiom h: $hm_x^{xy} /\!\!/ hta^{zu} = hta^{xu} /\!\!/ hta^{yu} /\!\!/ hm_x^{zy}$.
- SD Product: $dm_c^{ab} := hta^{ba} / tm_c^{ab} / hm_c^{ab}$ is associative.



A CC_u^{λ} example.



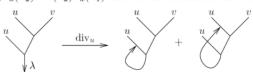


The Meta-Cocycle J. Set $J_u(\lambda) := J(1)$ where

$$J(0) = 0, \qquad \lambda_s = \lambda \, /\!\!/ \, C C_u^{s \lambda},$$

$$\frac{dJ(s)}{ds} = (J(s) /\!\!/ \operatorname{der}(u \mapsto [\lambda_s, u])) + \operatorname{div}_u \lambda_s,$$

and where $\operatorname{div}_u \lambda := \operatorname{tr}(u\sigma_u(\lambda)), \ \sigma_u(v) := \delta_{uv}, \ \sigma_u([\lambda_1, \lambda_2]) :=$ $\iota(\lambda_1)\sigma_u(\lambda_2) - \iota(\lambda_2)\sigma_u(\lambda_1)$ and ι is the inclusion $FL \hookrightarrow FA$:



Claim. $CC_u^{\operatorname{bch}(\lambda_1,\lambda_2)} = CC_u^{\lambda_1} / CC_u^{\lambda_2/\!\!/CC_u^{\lambda_1}}$ and

 $J_u(\operatorname{bch}(\lambda_1, \lambda_2)) = J_u(\lambda_1) / CC_u^{\lambda_2 / CC_u^{\lambda_1}} + J_u(\lambda_2 / CC_u^{\lambda_1}),$ and hence tm, hm, and hta form a meta-group-action.

1

Why ODEs? Q. Find f s.t. f(x+y) = f(x)f(y). **A.** $\frac{df(s)}{ds} = \frac{d}{d\epsilon}f(s+\epsilon) = \frac{d}{d\epsilon}f(s)f(\epsilon) = f(s)C$. Now solve this ODE using Picard's theorem or power series.

OC but not

B. Add a section about the fundamental graps of the complement.

Balloons and Hoops and their Universal Finite-Type Invariant, 2

The Invariant ζ . Set $\zeta(\rho^{\pm}) = (0, \pm u_x)$. This at least defines an invariant of u/v/w-tangles, and if the topologists will deliver a "Reidemeister" theorem, it is well defined on \mathcal{K}^{bh} .

homomorphic expansion) of w-tangles. } and BF theory.

 β Calculus. Let $\beta(H,T)$ be

$$\left\{ \begin{array}{c|ccc} \omega & x & y & \cdots \\ \hline u & \alpha_{ux} & \alpha_{uy} & \cdot \\ v & \alpha_{vx} & \alpha_{vy} & \cdot \\ \vdots & \cdot & \cdot & \cdot \end{array} \right. \quad \begin{array}{c} \omega \text{ and the } \alpha_{ux}\text{'s are rational functions in variables} \\ t_u, \text{ one for each } u \in T. \end{array} \right\},$$

$$hm_z^{xy}: \begin{array}{c|cccc} \omega & x & y & \cdots \\ \hline \vdots & \alpha & \beta & \gamma \end{array} \mapsto \begin{array}{c|cccc} \omega & z & \cdots \\ \hline \vdots & \alpha+\beta+\langle\alpha\rangle\beta & \gamma \end{array}$$

$$hta^{xu}: \begin{array}{c|cccc} \omega & x & \cdots & \omega \epsilon & x & \cdots \\ \hline u & \alpha & \beta & \mapsto & u & \alpha(1+\langle \gamma \rangle/\epsilon) & \beta(1+\langle \gamma \rangle/\epsilon) \\ \vdots & \gamma & \delta & & \vdots & \gamma/\epsilon & \delta-\gamma\beta/\epsilon \end{array},$$

where
$$\epsilon := 1 + \alpha$$
, $\langle \alpha \rangle := \sum_{v} \alpha_{v}$, and $\langle \gamma \rangle := \sum_{v \neq u} \gamma_{v}$, and let $R_{ux}^{+} := \frac{1 \mid x}{u \mid t_{u} - 1}$ $R_{ux}^{-} := \frac{1 \mid x}{u \mid t_{u}^{-1} - 1}$.

o a word about the Alexander The β quotient. Let $R = \mathbb{Q}[\![\{c_u\}_{u \in T}]\!]$ and $L_{\mathcal{U}}$ with central R and with $[u,v] = c_uv - c_vu$ for $u,v \in T$. Then $FL \to L_{\beta}$ and $CW \to R$. Under this,

$$\mu \rightarrow (\omega, \bar{\lambda}) \quad \text{with } \omega \in R, \quad \bar{\lambda} = \sum_{x \in H, \, u \in T} \lambda_{ux} ux,$$

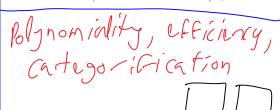
$$bch(u,v) \to \frac{c_u + c_v}{e^{c_u + c_v} - 1} \left(\frac{e^{c_u} - 1}{c_u} u + e^{c_u} \frac{e^{c_v} - 1}{c_v} v \right),$$

$$u /\!\!/ CC_u^{\lambda} = \left(1 + c_u \lambda_u \frac{e^{c_{\lambda}} - 1}{c_{\lambda}}\right)^{-1} \left(e^{c_{\lambda}} u - c_u \frac{e^{c_{\lambda}} - 1}{c_{\lambda}} \sum_{v \neq u} \lambda_v^{\lambda_v}\right)$$

 $\operatorname{div}_{u} \lambda = c_{u} \lambda_{u}$, and the ODE for J integrates to

$$J_u(\lambda) = \log\left(1 + \frac{e^{c_{\lambda}} - 1}{c_{\lambda}}c_u\lambda_u\right),$$

so ζ is formula-computable to all orders! Can we simplify?



 $\inf \lambda = \sum \lambda_{v} v \text{ then with } c_{\lambda} := \sum \lambda_{v} c_{v},$ $\lim |CC_{u}^{\lambda}| = \left(1 + c_{u} \lambda_{u} \frac{e^{c_{\lambda}} - 1}{c_{\lambda}}\right)^{-1} \left(e^{c_{\lambda}} u - c_{u} \frac{e^{c_{\lambda}} - 1}{c_{\lambda}} \sum_{v \neq u} \lambda_{v}\right), \quad \text{for } l \in \mathbb{Z}$

"God created the knots, all else in topology is the work of mortals."

