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Abstract

Later

These are lecture notes for talks given by the first author, written and completed by the second. The talks,
with handouts and videos, are available at [video]. See also further comments at [video].

1 Warm-up: the baby invariant, ZG

Let T be an oriented tangle diagram. Let G be a group, and suppose we are given two pairs R± = (g±o , g
±
u )

of elements of G. At each positive (resp. negative)1 crossing of T , assign g+o (resp. g−o ) to the upper strand
and g+u (resp. g−u ) to the lower strand, as in Figure 1. Then, for every strand, multiply all elements assigned
to it in the order that they appear and store the end result. If T has n strands, we get a collection of n
elements of G. Call this collection ZG(T ).
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Figure 1: Computing ZG of a tangle

Unfortunately, the gods are not so kind and ZG is not worth much more than the effort that went in it.
Indeed, invariance under the Reidemeister II move (see Figure 2) demands g−o = (g+o )

−1
and g−u = (g+u )

−1
,

while Reidemeister III adds that g+o and g+u , as well as g−o and g−u , commute. As a result, every component
of ZG(T ) collapses to the form gaog

b
u for some integers a and b, so all the information to bring home is the

1Signs are determined by the “right-hand rule”: If the right-hand thumb points along the direction of the upper strand of a
positive crossing, then the fingers curl in the direction of the lower strand.
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(a) Reidemeister I

=

(b) Reidemeister II

=

(c) Reidemeister III

Figure 2: The three Reidemeister moves

signed number of times a given strand crosses over or under any other strand. It will turn out, nevertheless,
that a similar procedure yields an amply non-trivial invariant with novel properties.

2 A better invariant: Zβ

The invariant that we wish to introduce can be thought of as taking values in a meta-group. This is a
generalization of what we call a “group computer”:

2.1 Preliminary: A Group Computer

If X is a finite set and G is a group we let GX denote the set of all possible assignments of elements of G to
the set X; these are “G-valued datasets, with registers labelled by the elements of X”.

x:g1

y:g2

u:g3

v:g4

Figure 3: A typical element of G{x,y,u,v}

A group computer can manipulate registers in some prescribed ways. For example, define mz
xy : GX∪{x,y} →

GX∪{z} using the group multiplication, {x : g1, y : g2} 7→ {z : g1g2}. There are obvious unary operations for
inverting or cloning an element, renaming or deleting a register, and inserting the identity in a new register,
respectively denoted Sx, ∆x

yz, ρ
y
x, dx and ey, and respectively implemented on GX∪{x} by fixing the content

of X and mapping {x : g} to {x : g−1}, {y : g, z : g}, {y : g}, {} and {x : g, y : e}. In addition there is
a binary operation for merging data sets,

⋃
: GX × GY → GX∪Y , which takes two data sets P and Q and

makes their disjoint union P ∪Q.
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2.2 Meta-Groups

The operations on a group computer obey a certain set of basic set-theoretic axioms as well as axioms
inherited from the group G. A meta-group is an abstract computer that satisfies some but not all of those
axioms. We postpone the precise definition to Section 3; it is best to begin with a prototypical example,
as follows. Let GX := MX×X(Z) denote (not in reference to any group G) the set of |X| × |X| matrices of
integers with rows and columns labelled by X. The operation of “multiplication”, on say, 3 × 3 matrices,
mxy
z : G{x,y,w} → G{z,w}, is defined by simultaneously adding rows and columns labelled by x and y:




x y w

x a b c
y d e f
w g h i


 7→

( z w

z a+ b+ d+ e c+ f
w g + h i

)

While still satisfying the associativity condition mxy
u m

uv
w = myv

u m
xu
w , this example differs from a group

computer by the failure of a critical axiom: if P ∈ G{x,y},

dyP ∪ dxP 6= P

Indeed, if P ∈ G{x,y} is the matrix

(x y

x a b
y c d

)
, then

dyP ∪ dxP =

(x y

x a 0
y 0 d

)
6= P

2.3 Meta-Bicrossed Products

Suppose a group G is given as the product G = TH of two of its subgroups, where T ∩H = {e}. Then also
G = HT 2 and every element of G has unique3 representations of the form th and h′t′ where h, h′ ∈ H and
t, t′ ∈ T . Accordingly there is a “swap” map sw : T ×H → H × T , (t, h) 7→ (h′, t′) such that if g = th then
g = h′t′ also. The swap map satisfies some relations; in group-computer language, the important ones are
as in Figure 4 4. Conversely, provided that the swap map satisfies relations 4a and 4b, the data (H,T, sw)
determines a group G, with product given by {(h1, t1), (h2, t2)} 7→ (h1h

′
2, t
′
1t2) where sw(t1, h2) = (h′2, t

′
1).

G is called the bicrossed product of H and T , which we will denote (H ×T )sw. In a semidirect product, one
of H or T is normal (say T ) and the swap map is sw : (t, h) 7→ (h, h−1th).

2Indeed, if g−1 = th, then g = h−1t−1, so g−1 ∈ TH implies g ∈ HT , and as TH = G, also HT = G.
3Separation of variables: suppose g = h1t1 = h2t2. Then we have h−1

2 h1 = t2t
−1
1 , which implies that h1 = h2 and t1 = t2

since h−1
2 h1 ∈ H, t2t

−1
1 ∈ T , and H ∩ T = {e}.

4X �A �B is composition made unambiguous: first apply A to X, then apply B.
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=

t1 t2 h4 t1 t2 h4

(a) tm12
1 � sw14 = sw24 � sw14 � tm12

1

=

t1 h4 t1 h4h3 h3

(b) hm34
3 � sw13 = sw13 � sw14 � hm34

3

Figure 4: swap operation axioms. tm and hm stand for multiplication in T and H respectively.

The corresponding notion of a meta-bicrossed product
is a collection of sets β(H,T ) indexed by all pairs of
finite sets H and T (H for “heads”, T for “tails”), and
equipped with multiplication maps tmxy

z (x, y and z
tail labels), hmxy

z (x, y and z head labels), and a swap
map swthxy (where t and h indicate that x is a tail label

and y is a head label — note that swhtyx is in general a
different map) satisfying (a) and (b).
Given the above we can make a “group multiplication”
map out of the head and tail multiplication maps via
gmxy

z := swthxy � tmxy
z � hmxy

z . Thus a meta-bicrossed
product defines a meta-group with ΓX = β(X,X). A
prototypical example is again given by (now rectangu-
lar) matrices, µ(H,T ) := MT×H(Z), with tmxy

z and
hmxy

z corresponding to adding two rows and adding
two columns, and swap being the trivial operation.




h1
t1 a+ b
t2 c+ d
t3 e+ f







h1 h2
t1 a b
t2 c d
t3 e f




hm1,2
1

99

tm1,2
1 //

swth
1,2

%%




h1 h2
t1 a+ c b+ d
t3 e f







h1 h2
t1 a b
t2 c d
t3 e f




2.4 β Calculus

The β calculus has an arcane origin [VIDEO]5 which is not appropriate to mention here. We expect that it
can be presented in a much simpler and fitting context than that in which it was discovered. Accordingly
we will simply pull it out of a hat. Let β(H,T ) be (again, in reference to sets H and T ) the collection of
arrays with rows labeled by ti ∈ T and columns labeled by hj ∈ H, along with a distinguished element ω.
Such arrays are conveniently presented in the following format:

ω h1 h2 . . .
t1 α11 α12 ·
t2 α21 α22 ·
... · · ·

The αij and ω are rational functions of variables Ti, which are in bijection with the row labels ti.

5in which, among other things, the “heads and tails” vocabulary is motivated.
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β(H,T ) is equipped with a peculiar set of operations. Despite being repulsive at sight, they are completely
elementary. They are defined as follows:

tmxy
z :

ω . . .
tx α
ty β
... γ

7→
ω . . .
tz α+ β
... γ

Here α and β are rows and γ is a matrix.
The sum α + β is accompanied by the
necessary change of variables Tx, Ty 7→
Tz.

hmxy
z :

ω hx hy . . .
... α β γ

7→
ω hz . . .
... α+ β + 〈α〉β γ

Here α and β are columns, γ is a matrix,
and 〈α〉 =

∑
i αi.

swthxy :

ω hy . . .
tx α β
... γ δ

7→
ωε hy . . .
tx α(1 + 〈γ〉/ε) β(1 + 〈γ〉/ε)
... γ/ε δ − γβ/ε

Here α is a single entry, β is a row, γ is
a column, and δ is a matrix comprised
of the rest. ε = 1 + α. Note also that
γβ is the matrix product of the column γ
with the row β and hence has the same
dimensions as the matrix δ.

We also need the disjoint union, defined by

ω1 H1

T1 α1
∪ ω1 H1

T1 α1
=

ω1ω2 H1 H2

T1 α1 0
T2 0 α2

Finally there are two elements which will serve as a pair of “R-matrices”, analogous to the pair of pairs
(g±o , g

±
u ) of ZG:

R+
xy =

1 hx hy
tx 0 Tx − 1
ty 0 0

R−xy =
1 hx hy
tx 0 T−1x − 1
ty 0 0

We make β into a meta-group via the “group-multiplication” map gmxy
z := swxy � tmxy

z � hmxy
z . We will

later set out to make proper definitions, write down the remaining operations, and establish the following
Theorem 1. β is a meta-bicrossed product.

2.5 Zβ

Let T be again an oriented tangle diagram. At each crossing, assign a number to the upper strand and to
the lower strand. Form the disjoint union

⋃
{i,j}R

±
ij where {i, j} runs over all pairs assigned to crossings,

with i labelling the upper strand and j labelling the lower strand, and where ± is determined by the sign
of the given crossing. Now for each strand multiply all the labels in the order in which they appear. That
is, if the first label on the strand is k, apply gmkl

k where l runs over all labels subsequently encountered on
the strand (in order). If T has n strands, the result is an n × n array with corner element. Call this array
Zβ(T ).
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As an example, for the knot 817 [ROLFSEN] illustrated in Figure 5a, make the disjoint union6

R−12,1R
−
2,7R

−
8,3R

−
4,11R

+
16,5R

+
6,13R

+
14,3R

+
10,15,

which is given by the following array:

1 h1 h3 h5 h7 h9 h11 h13 h15
t2 0 0 0 T−12 − 1 0 0 0 0
t4 0 0 0 0 0 T−14 − 1 0 0
t6 0 0 0 0 0 0 T6 − 1 0
t8 0 T−18 − 1 0 0 0 0 0 0
t10 0 0 0 0 0 0 0 T10 − 1
t12 T−112 − 1 0 0 0 0 0 0 0
t14 0 0 0 0 T14 − 1 0 0 0
t16 0 0 T16 − 1 0 0 0 0 0

Then apply the multiplications gm1k
1 , with k running from 1 to 16, to get the following 1 × 1 array with

corner element:
−T−31 + 4T−21 − 8T−11 + 11− 8T1 + 4T 2

1 − T 3
1 h1

t1 0

Theorem 2. (1) Zβ is an invariant of oriented tangle diagrams. (2) Restricted to braids, it is equivalent
to the Burau representation. (3) Restricted to knots, the corner element is the Alexander polynomial.

Proof. (1) Trivial. We do the computation for the Reidemeister III move to illustrate. The disjoint unions
for each side of the equality are given by:

1

2

3

4

5

6

1

2

3

4

5

6

R−1,5R
−
6,2R

+
3,4 =

1 h1 h2 h4
t3 0 0 T3 − 1
t5 T−15 − 1 0 0
t6 0 T−16 − 1 0

R+
6,1R

−
2,4R

−
3,5 =

1 h1 h4 h5
t3 0 T−12 − 1 0
t5 0 0 T−13 − 1
t6 T6 − 1 0 0

Then one checks that indeed

R−1,5R
−
6,2R

+
3,4 � gm1,4

1 � gm2,5
2 � gm3,6

3 = R+
6,1R

−
2,4R

−
3,5 � gm1,4

1 � gm2,5
2 � gm3,6

3 =

1 h1 h2
t1 T−12 − 1 0
t2 T−12 (T3 − 1) T−13 − 1

(2) (SKETCH) The key is to show that a single crossing gets mapped to (essentially) its Burau representation
via Zβ and that concatenating braids (essentially) corresponds to matrix multiplication of the “matrix part”
of Zβ .

6From now on we omit the ∪ in disjoint unions: β1β2 := β1 ∪ β2. We also suppress rows/columns of zeros.
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(3) (WISHFUL) Note first that a priori Zβ does not make sense on round knots, as one would have to
multiply all the labels together (including the last remaining one with itself). It turns out however that
round knots are equivalent to long knots, so one can simply pick an arbitrary7 point to cut the knot open
and compute Zβ without ambiguity. However to prove the assertion, given a knot K, turn it first into a
braid bK via Alexander’s theorem. Compute Zβ(bK) to obtain the Burau representation, as in (2). Then
multiply all the strands together except the last one; this operation is equivalent to taking the determinant
of an (n− 1)× (n− 1) minor.

One philosophically appealing major property of Zβ is that the operations used to compute it have a literal
interpretation of gluing crossings together. In particular, at every stage of the computation we get an
invariant of the tangle8 made of all the crossings but only those for which the corresponding gm was carried
out have been glued. Additionally, unlike other existing extensions of the Alexander polynomial to tangles,
Zβ takes values in spaces of polynomial size, at every step of the calculation.

3 More on meta-groups

3.1 The meta-group of coloured v-tangles

When one tries to follow the interpretation of the computation of Zβ as progressively attaching crossings
together to form a tangle, one will in general encounter a step where the tangle becomes non-planar (a strand
will have to go through another in an “artificial” crossing to reach the boundary disk). See Figure 5b. Such
tangles are called virtual or v-tangles and constitute a rich subject of study on their own [REF]. For us it
will suffice to give them a name.

1
12

13
10

3
2

7

9

14

8
4

11

15

5

6

16

(a) 817 with crossings labelled (b) 817 after attaching crossings 1 through 10. The
arcs with green dots can not make it out to the
boundary disk.

Figure 5: The knot 817

Armed with this new word in our vocabulary we can now define what seems to be the “most natural” meta-
group: the meta-group of oriented coloured v-tangles. Let ΓX be the set of v-tangles with strands labelled
by X. There is a natural definition for all the meta-group operations. mxy

z
9 concatenates strand x with

7

8the careful reader may wish to peek ahead at Section 3.1 for a better grasp of this statement.
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strand y and labels the resulting strand z (note that we need virtual tangles for this to be well-defined), Sx

reverses the orientation of strand x, ex creates an isolated strand with label x, dx deletes strand x, and ∆x
yz

is the cabling operation with input strand x and output strands y and z. [EXPAND]

3.2 Definitions

We now proceed to laying down the details of the definitions of meta-groups and meta-bicrossed products.
A more elegant approach is possible and partially realized in the next section.

A meta-group is a collection of sets Γ indexed by all finite sets, equipped with operations mxy
z : Γ{x,y}∪X →

Γ{z}∪X , Sx : ΓX → ΓX , ex : ΓX → Γ{x}∪X , dx : Γ{x}∪X → ΓX , ∆x
yz : Γ{x}∪X → Γ{x,y}∪X , and

⋃
:

ΓX × ΓY → ΓX∪Y satisfying the following:

• “Group theory axioms”

– ex �mxy
z = ρyz (left identity)

– mxy
u �muz

v = myz
u �mxu

v (associativity)

– ∆x
y,z � Sy �myz

x = dx � ex (left inverse)

• “Set manipulation axioms”

– ρyx � ρxy = id

– ρxy � ρyz = ρxz

– ∆x
yz � dy = ρxz

– ∆x
yz � dx = ρxy

– ρyx � dy = dx

– mxy
z � dz = dx � dy

– ex � dx = id

– Sx � dx = id

– ∆x
yz = ∆x

zy

– ∆x
yz � ρzu = ∆x

yu

– ρxu � ∆u
yz = ∆x

yz

– mxy
z � ρzu = mxy

u

– ρxu �muy
z = mxy

z

– ex � ρxy = ey

– Sx � ρxy = ρxy � Sy

– {operations involving disjoint sets of labels commute (e.g. ex � ey = ey � ex)}

A meta-bicrossed product is a collection of sets Γ indexed by all pairs of finite sets, equipped with maps hm,
tm, and sw, such that:

• hmhxhy

hz
: Γ(H ∪ {hx, hy}, T )→ Γ(H ∪ {hz}, T ) and tm

txty
tz : Γ(H,T ∪ {tx, ty})→ Γ(H,T ∪ {tz}) define

meta-groups η and τ for each particular particular t ∈ T and h ∈ H respectively.

9Remark: this is not a meta-generalization of the group structure on braids.
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• mxy
z = swxy � hmhxhy

hz
� tmtxty

tz defines a meta-group with ΓX = Γ(X,X)

• swxy satisfies the following relations

– tmxy
x � swxz = swxz � swyz � tmxy

x

– hmyz
y � swxy = swxy � swxz � hmyz

y

– swxy � tρxu = tρxu � swuy

– swxy � hρyu = hρyu � swxu

– tex � swxy = tex

– hey � swxy = hey

If in addition all head operations commute with all tail operations, we call Γ a Hopf meta-bicrossed product
(Hopf, because in the β calculus it is the doubling map that gives trouble, see Section 4.1).

3.3 An alternative approach

There is a curious way to package the definition of a meta-group in a much tidier fashion using categorical
language, as follows. Let Op and mset be the multicategories whose objects are finite sets and such that

HomOp(X
1, . . . , Xn, Y ) = HomGroup(FY → F (X1 ∪ · · · ∪Xn))

Hommset(Ξ
1, . . . ,Ξn → Θ) = Homset(

n∏

i=1

Ξi → Θ)

Here FX denotes the free group on the alphabet X. We can now give a very simple definition: a meta-group
is a functor Γ : Op→ mset. The operations of Section 2 then correspond via Γ to free group homomorphisms
given as follows:

mxy
z : F ({z} ∪X)→ F ({x, y} ∪X), mxy

z (a) =

{
xy a = z

a a 6= z

Sx : F ({x} ∪X)→ F ({x} ∪X), Sx(a) =

{
a−1 a = x

a a 6= x

ex : F ({x} ∪X)→ FX, ex(a) =

{
e a = x

a a 6= x

ρxy : F ({y} ∪X)→ F ({x} ∪X), ρxy(a) =

{
x a = y

a a 6= y

dx : FX → F ({x} ∪X), dx(a) = a

∆x
yz : F ({y, z} ∪X)→ F ({x} ∪X), ∆x

yz(a) =

{
x a = y, a = z

a otherwise
⋃
X,Y : F (X ∪ Y )→ FX × FY

The axioms listed in the previous section then follow from identities satisfied by the above homomorphisms.
For example, the axiom for the identity element insertion, ex �mxy

z = ρyz (the statement eg = g for groups)
follows from the calculation ex(mxy

z (z)) = ex(xy) = ex(x)ex(y) = ey = y = ρyz(z).

9



It is slightly more challenging to find a “universal” model for meta-bicrossed products. One can ask whether
there is a systematic way to turn any algebraic structure into a meta-algebraic structure. We will leave these
matters open.

4 Some verifications: computer program

As mentioned and made explicit above, the operations of the β calculus are ugly. However, it can be
implemented in a computer program in a very short paragraph, and the program handles the proofs of
Theorems 1 and 2 very well. The following Mathematica code produces a ready-to-use program with neatly
formatted output:

In the above, a β matrix is represented as a polynomial in two variables µ =
∑
αijtihj . This makes some

calculations very simple! Selecting the content of column i is achieved by taking a derivative with respect
to hi; setting all the t’s equal to 1 computes its column sum. The disjoint union of two matrices is simply
the sum of their polynomials.
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4.1 Theorem 1

To establish Theorem 1 we just need to check that the operations of β calculus satisfy the axioms of a
meta-bicrossed product listed in Section 3.2. Let us illustrate the method with the important swap map
axiom tm12

1 � sw14 = sw14 � sw24 � tm12
1 . We can use the computer program to check it on an arbitrary

3× 2 array (i.e. an array with one more than the number of “participating” indices of each type):

We claim that this constitutes a proof that the identity holds on arrays of arbitrary dimension. The key lies
in the fact that the operations are linear in the “non-participating” indices. It is very clear then, from the
2-variable polynomial point of view, that the result still holds if one replaces a non-participating entry by an
arbitrary sum. The argument applies to the other axioms as well and the reader is welcome to verify them.

As it stands, the β calculus is not a Hopf meta-bicrossed product. It is readily seen that doubling tails does
not commute with multiplying heads:

It is possible, nevertheless, to slightly complicate the β calculus to make the above identity hold (in fact,
this amounts to “simplfying it less” from its origin in [REF]):

In this alternate scheme, we use variables cx instead of their exponentials Tx. We have different “R-matrices”
given by:

R+
xy =

1 hx hy
tx 0 c−1x (ecx − 1)
ty 0 0

R−xy =
1 hx hy
tx 0 c−1x (e−cx − 1)
ty 0 0

The operations are the same as before except that the “column norm” is now 〈µ〉 =
∑
i ciαi. This fixes the

“bug” above and makes all the axioms of a Hopf meta-bicrossed product hold. The verifications are left to
the reader.

4.2 Theorem 2
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