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ABSTRACT. We describe a “concentration i the diagonal” condition on the Khovanov com-
plex of tangles, show that this condition is satisfied by the Khovanov complex of the single
crossing tangles (*) and (), and prove that it is preserved by alternating planar algebra
compositions. Hence, this condition is satisfied by the Khovanov complex of all alternating
tangles. Finally, in the case of (-tangles, that-is links, our condition is equivalent to a well
known result,which states that the Khovanov homology of a non-split alternating link is
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1. INTRODUCTION

Khovanov [Kh] constructed an invariant of links which opened new prospects in knot
theory and which is now known as the Khovanov homology. Bar-Natan in [BN1| shows how
to compute this invariant and found that it is a stronger invariant than the Jones polynomial.
Khovanov, Bar-Natan and Garoufalidis [Ga] formulated several conjectures related to the
Khovanov homology. One of these refers to the fact that the Khovanov homology of a
non-split alternating link is supported in two lines. To see this, in Table 1, we present the
dimension of the groups in the Khovanov homology for the.Borromean link and illustrate
that the no-zero dimension groups are located in two consecutive diagonals. The fact that
every alternating link satisfies was proved by Lee in [Leel].

In [BN2| Bar-Natan presented a new way of seeing the Khovanov homology. In his
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Table 1. The Khovanov homology for the Borromean link

approach, a formal chain complex is assigned to every tangle. This formal chain complex,
regarded within a special category, is an (up to homotopy) invariant of the tangle. For the
particular case in which the tangle is a link, this chain complex coincides with the cube of
smoothings presented in [Kh].

This local Khovanov theory was used in [BN3] to make an algorithm which provides a
faster computation of the Khovanov homology of a link. The technique used in that last
paper was also important for theoretical reasons. We can apply it to prove the invariance
of the Khovanov homology, see [BN3]. It was also used in [BN-Mor| to give a simple proof
of Lee’s result stated in [Lee2|, about the dimension of the Lee variant of the Khovanov
homology. Here, we will show how it can be used to state a generalization to tangles of the
fore-mentioned Lee’s theorem [Leel] about the Khovanov homology of alternating links.

-

f\ 7J Given an integer k > 0, a not empty intersection of a link with the 3-ball B having
v 72k
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boundary points is called a k-tangle. Thus, a k-tangle diagram consists of k open arcs
(strands) and a finite number of loops in the d]S(, D?. The 2k end points of the arcs being 2k
different fixed points in the boundary of D?, and with the over/under crossing information

represented as usual. [A tangle T is non- spl# if every planar isotopy of its tangle diagram Jo 1 4

produces a connected tangle dlagram A tangle diagram S, having no crossing points is fee ) o

called a smoothing,

2 In section 6.1 we observe that the Khovanov complex of an al-

- . . . . . |
e s ternating tangle can be endowed with consistent “orientations”,’ )

namely, every strand in every smoothing appearing in the complex
: 5 can be oriented in a natural way, and likewise every cobordism,
' in a manner so that these orientations are consistent. (A quick
’ glance on Figures 7 and 8 should suffice to convince the experts).
g — Given an oriented smoothing o, a point in the boundary of ¢ can
be considered as an in-boundary point or an out-boundary point
depending on the orientation of the respective strand in this point. We can enumerate the
boundary points of the ¢ from 0 to 2k — 1 starting from an in-boundary point of a strand,
counting counterclockwise, and finishing in the boundary point to the left of the mentioned
in-boundary point. If h, and {, denote respectively the numbers assigned to the in-boundary
and out-boundary points of an open strand « in an oriented k-strand smoothing ¢. Then

the rotation number of  is given by: R(a) = o [ta — haox — 3, where the bracket [ ] is
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defined by
R A ifj>0
lex = { j+2 ifj<0.
If @ is a loop, R(a) = 1 if « is oriented counterclockwise, and R(a) = —1 if « is oriented
clockwise. The rotation number of ¢ is the sum of the rotation numbers of its components
(loops and strands).

Following [BN2], we define a certain graded category Cob? of oriented cobordisms. The
objects of Cob® are oriented smoothing, and the morphisms are oriented cobordisms. This
category is used to define the category Kom(Mat(Cob?)) (abbreviated Kob,) of complexes
over Mat(Cob?).

Specifically, for degree-shifted smoothings o{¢} we define R(c{q}) := R(c)-+q. We further
use this degree-shifted rotation number to define a special class of chain complexes in Kob,,
of the form

Qe 03], = [, — e
which satisfies that for all degree-shifted smoothings o7{q}, 2r — R(0}{q}) is a constant that
we call rotation constant of the complex. In other words, twice the homological degrees and
the degree-shifted rotation numbers of the smoothings always lie along a single diagonal.
Chain complexes satislying this property are called diagonal complezes.

S AR }= An important tool for proving Theorem 1 is the concept of aller- " P
4, Tle groof ﬂatmq planar algebra. An alternating planar algebra is an oriented R TR // E
' Y //planar algebra as in [BN2, Section 5|, where the d-input planar arc -~ /\

i }dlagrdms D satisfy the following conditions: i) The number k of _J Y,

/ strings ending on the external boundary of D is greater than 0. ii) e, RS
¢ Jhm .| Thereis complete connection among input discs of the diagramand "~ | \j - \ ;
- | its arcs, namely, the union of the diagram arcs and the boundary T, '

of the internal holes is a connected sct. iii) The in- and out-strings
| alternate in every boundary component of the diagram. A planar arc diagram as this is
\_called a type-A planar diagram. If ® is an element in the planar algebra and D is a 1-inputl
type-A planar diagram then D(®) is called a partial closure of ®.
Using the above terminology, our main result is stated as follow:

Theorem 1. If T is an alternating non-split tangle then its Khovanov homology Kh(T) is f“ \ ; _
diagonal and ﬁnthﬁrmore the same is true for every partial closure of Kh(T), N y f ‘} u

We sf that a complex ) is coherently diagonal if it is a diagonal complex Whose fjartlal
closure, is-also diagonal. Indeed, Theorem 1 can be restated as saying that the Khovanov . )
homology Kh(T) of a non-split alternating tangle is coherently diagonal. To prove this * 1¢~ 9
theorem we use the fact that non-split alternating tangles form an alternative planar algebra
generated for the one-crossing tangles (>4) and (X). Thus Theorem 1 follows from the
observation that Kh(>X) and Kh() are coherently diagonal and from Theorem 2 below:

|

Theorem 2. If(,...,Q, are coherently diagonal complexes and D is an alternating planar
diagram then D(Sy, ..., 8, is coherently diagonal

In the case of alternating tangles with no boundary, i.e., in the case of alternating links,
Theorem 1 reduces to Lee’s theorem on the Khovanov homology of alternating links.
The work is organized as follows. In section 2, we review Bar-Natan’s local Khovanov
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theory. Section 3 is devoted to introduce the category Cob? an give a quick review of some
concepts related to alternating planar algebras. In particular we review the concepts of rota-
tion number, alternating planar diagram, associated rotation number, and basic operators.

Section 4 introduces the concepts of diagonal complexes, coherently diagonal complexes,
and their partial closures. We state here some results about the complexes obtained when a
basic operator is applied to alternating elements, leading to the proof in section 5 of Theorem
2. Finally section 6 is dedicated to the study of non-split alternating tangles. Here, we prove
Theorem 1 and derive from it the Lee theorem formulated in [Leel].

2. THE LOCAL KHOVANOV THEORY: NOTATION AND SOME DETAILS

The notation and some results appearing here are treated in more details in [BN2, BN3,
Naot]. Given a set B of 2k marked points on a circle C, a smoothing with boundary B is
a union of strings ay, ..., @, embedded in the planar disk for which C' is the boundary, such

are points on B, strands. If B = (), the smoothing is a union of circles.

We denote C'ob*(B), the category whose objects are smoothings with boundary B, and
whose morphisms are cobordisms between such smoothings, regarded up to boundary pre- )
serving isotopy. The composition (;f morphisms is given by placing one cobordism atop the = V
Othﬁ'l} ~$ Shown ¢ n T k e f’"'f/f"hﬁl #

I v

! = 4

Our ground ring is one in which 27! exists. The dotted figure is used as an ab-

breviation of 3 and Cob? /i(B) represents the category with the same objects and

morphisms as C'ob®( B), whose morphisms are mod out by the local relations:

G @ S
w 00 0-D @

We will use the notation Cob® and Cob /1 28 a generic reference, namely, Cob® = | Cob®(B)
and Cobl;, = UpCob;,(B). If B has 2k elements, we usually write Cob (k) instead of
Cob},(B). If C is any category, Mat(C) will be the additive category whose objects are
column vectors (formal direct sums) whose entries are objects of C. Given two objects in
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this category,

O 01
o=| or—|
OTL O}n

the morphisms between these objects will be matrices whose entries are formal sums of
morphisms between them. The morphisms in this additive category are added using the
usual matrix addition and the morphism composition is modelled by matrix multiplication,
Le, given two appropriate morphisms F' = (/) and G = (Gy;) between objects of this
category, then [ o (7 is given by

FolG= ZP‘M;GR]‘»
k

Kom(C) will be the category of formal complexes over an additive category C. Komy;,(C) is
Kom(C) modulo homotopy. We also use the abbreviations Kob(k) and Kob (k) for denoting
Kom (Mat(Cobj ,(k))) and Kom ,(Mat(Cob (k).

Objects and morphisms of the categories Cob®, Cob? s Mat(Cob? /1), Kob(k), and Kob (k)
can be seen as examples of planar algebras, i.e., if [ is a n-input planar diagram, it defines
an operation among elements of the previously mentioned collections. See |[BN2] for specifics
of how D) defines operations in each of these collections. In particular, if {€2;, d;) € Kob(k;)
are complexes, the complex (2, d) = D(Q,...,,) is defined by

Q= P DO, )

=71+ +rn

(2) n
d|D(QT{1 s i) = Z(—l)zj<" TJD([“IL, — d{, ce ,IQ;H),

i=1

D(£y,...,£2,) is used here as an abbreviation of D((Q4,dy), ..., (Q,,d,)).
In [BN2] the following very desirable property is also proven. The Khovanov homology is a

planar algebra morphism between the planar algebras 7 (s) of oriented tangles and Kob (k).
That is to say, for an n-input planar diagram D), and suitable tangles 71, ..., T},, we have

(3) Kh(D(Ty, ..., T,)) = D(KR(T1), ..., Kh(T})).

This last property is used in [BN3] to show a local algorithm for computing the Khovanov
homology of a link. In that paper, Bar-Natan explained how it is possible to remove the
loops in the smoothings, and some terms in the Khovanov complex Kh(T;) associated to
the local tangles 71, ...,T,, and then combine them together in an n-input planar diagram
D obtaining D(Kh(T}), ..., Kh(T,)), and the Khovanov homology of the original tangle.

The elimination of loops and terms can be done thanks to the following: Lemma 4.1 and
Lemma 4.2 in [BN3]. We copy these lemmas verbatim:

Lemma 2.1. (Delooping) If an object S in Cobfﬂ contains a closed loop {, then it is isomor-
phic (in Mat(Cob? 1)) to the direct sum of two copies S'{+1} and S'{—1} of S in which { is
removed, one taken with a degree shift of +1 and one with a degree shift of —1. Symbolically,
this reads O = 0{+1} @ #{—1}.
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The isomorphisms for the proofl can be seen in:

[D/ @ {_1}
o O
\
p TOE
using all the relations in (1).

—=C

Lemma 2.2. (Gaussian elimination, made abstract) If ¢ : by — by is an isomorphism (in
some additive category C), then the four term complex segment in Mat(C)

(3) m @ 2) m (v v)

(5) - [C] 73 = [F] -

is isomorphic to the (direct sum) complex segment
0
p

Both these complexzes are homotopy equivalent to the (simpler) complex segment

6 - [] A - 7]

m (QOS f—*?cb 15) {

52} (0 v)

(8) ) )

[D] [£] [F] -

(7) [

Here C, D, E and F' are arbitrary columns of objects in C and all Greek letters (other
than ¢) represent arbitrary matrices of morphisms in C (having the appropriate dimensions,
domains and ranges); all matrices appearing in these complexes are block-matrices with blocks
as specified. by and by are billed here as individual objects of C, bul they can equally well be
laken to be columns of objects provided (the morphism matriz) ¢ remains invertible.

From the previous lemmas we infer that the Khovanov complex of a tangle is homotopy
equivalent to a chain complex without loops in the smoothings, and in which every differ-
ential is a non-invertible cobordism. In other words, if (©2,d) is a complex in Cob; /1, We can
use lemmas 2.1, 2.2, and obtain a homotopy equivalent chain complex (€', d') with no loop
in its smoothings and no invertible cobordism in its differentials. We say that (€', d') is a
reduced complex of (,d) .

3. THE CATEGORY Kob, AND ALTERNATING PLANAR ALGEBRAS

Tn this section we introduce an alternating orientation in the objects of Cob; (k). This ori-
entation induces an orientation in the cobordisms of this category. These oriented k-strand
smoothings and cobordisms form the objects and morphisms in a new category. The com-
position between cobordisms in this oriented category is defined in the standard way, and it
is regarded as a graded category, in the sense of [BN2, Section 6]. We subject out the cobor-
disms in this oriented category to the relations in (1) and denote it as Cob%(k). Now we can
follow [BN2] and define sequentially the categories, Mat(Cob2(k)), Kom(Mat(Cob}(k))) and



