

In order to discuss the groups KV_{n} and $\widehat{\mathrm{KV}}_{2}$ we introduce a Lie group 1-cocycle $j:$ TAut $_{n} \rightarrow \mathfrak{t r}_{n}$ which integrates the Lie algebra 1-cocycle div : $\mathfrak{t} \mathfrak{e r}_{n} \rightarrow \mathfrak{t r}_{n}$.
Proposition 5.1. There is a unique map $j: \mathrm{TAut}_{n} \rightarrow \mathfrak{t r}_{n}$ which satisfies the group cocycle condition

$$
\begin{equation*}
j(g h)=j(g)+g \cdot j(h), \quad \text { That's also what } \tag{18}
\end{equation*}
$$

and has the property

$$
\begin{align*}
& \text { he property } \tag{19}\\
& \text { nice language }\left.{ }_{0} \frac{d}{d s} j(\exp (s u))\right|_{s=0}=\operatorname{div}(u) \text {. }
\end{align*}
$$

Proof. Let \mathfrak{g} be a semi-direct sum of tder_{n} and $\mathfrak{t r}_{n}$. The cocycle property of the divergence implies that the map tor ${ }_{n} \rightarrow \mathfrak{g}$ defined by formula $u \mapsto u+\operatorname{div}(u)$ is a Lie algebra homomorphism. Define $j(\exp (u))$ by formula $\exp (u+\operatorname{div}(u))=$ $\exp (j(\exp (u))) \exp (u)$. For $g=\exp (u)$ and $h=\exp (v)$ we have

$$
\exp (j(g h)) g h=(\exp (j(g)) g)(\exp (j(h)) h)=\exp (j(g)+g \cdot j(h)) g h
$$

which implies (18).
Equations (18) and (19) imply the following differential equation for j :

$$
\frac{d}{d s} j(\exp (s u))=\operatorname{div}(u)+u \cdot j(\exp (s u))
$$

Given the initial condition $j(e)=0$, this equation admits a unique solution,

$$
\left.\begin{array}{l}
j(\exp (u))=\frac{e^{u}-1}{u} \cdot \operatorname{div}(u) \\
\text { of the cocycle } j .
\end{array}\right\} \begin{aligned}
& \text { There ought to be a direct proof } \\
& \text { that the jormula satisfies by this } \\
& \text { for } 18) .
\end{aligned}
$$

which proves uniqueness of the cocycle j.

In λ calculus: (approximate)

$$
\begin{aligned}
& \left.\frac{d}{\sqrt{5}} i(s u)\right|_{s=0}=d i_{y} u \\
& \left.j\left(s_{1}+s_{2}\right) u\right)=(s, u) j\left(s_{2} u\right)+j\left(s_{1} u\right)
\end{aligned}
$$

So

$$
\frac{d}{d s} j(s u)=u j(s u)+d i v_{y} u
$$

$$
\text { Aside: solve } \dot{f}=u f+a
$$

$$
\text { sol: } \quad f=\frac{e^{+u}-1}{u} a
$$

$$
\stackrel{e}{f}^{c}=e^{+u} a
$$

I must have a better description of stableAply? :

7058942170 mansinkm 8942319 Morin
$\rightarrow \begin{gathered}\text { The may not } \\ \text { be one. }\end{gathered}$

