\$\ambda\$ to \$\beta\$
July-18-12
$10: 11$ AM
In λ,

$$
\mu \|_{0}\left(y \mapsto e^{\mu_{x}} \bar{y} e^{-\mu_{x}}=e^{a d \mu_{x}}(\bar{y})\right)
$$

In $\beta, \mu=\sum t_{i} h_{i j} \alpha_{i j}$

$$
\mu_{x}=\sum t_{i} \alpha_{i x}
$$

A general β calculation:

$$
[x, y]=c_{x} y-c_{y} x
$$

$$
t_{y} / . y \rightarrow \operatorname{ad} \sum \alpha_{i} t_{i}(y)=\sum \alpha_{i}\left[t_{i}, t_{y}\right]=
$$

$$
=\sum\left(\alpha_{i} c_{i} t_{y}-\alpha_{i} c_{y} t_{i}\right)
$$

So $t_{y} \ell_{0} y \rightarrow e^{\operatorname{ad} \sum \alpha_{i} t_{i}}(\bar{y})=$

$$
e^{\sum \alpha_{i} c_{i}} t_{\bar{y}}-\sum_{i} \alpha_{i} c_{y} t_{i} \frac{e^{\sum{z_{i}}^{j} c_{j}-1}}{\sum \alpha_{i} c_{j}}
$$

