Meta-Groups, Meta-Bicrossed Products and the Alexander Polynomial

Dror Bar-Natan and Sam Selmani

July 3, 2012
iurladdr.

Abstract

Later.
Dor story here.

1 Warm-up: the baby invariant, Z^{G}

Let T be an oriented tangle diagram. Let G be a group, and suppose we are given two pairs $R^{ \pm}=\left(g_{o}^{ \pm}, g_{u}^{ \pm}\right)$ of elements of G. At each positive (resp. negative) ${ }^{1}$ crossing of T, assign g_{o}^{+}(resp. g_{o}^{-}) to the upper strand and g_{u}^{+}(resp. g_{u}^{-}) to the lower strand, as in Figure 1. Then, for every strand, multiply all elements assigned to it in the order that they appear and store the end result. If T has n strands, we get a collection of n elements of G. Call this collection $Z^{G}(T)$.

(a) assigning values to crossings

(b) collecting along strands

Unfortunately, the gods are not so kind and Z^{G} is not worth much more than the effort that went in it. Indeed, invariance under the Reidemeister II move demands $g_{o}^{-}=\left(g_{o}^{+}\right)^{-1}$ and $g_{u}^{-}=\left(g_{u}^{+}\right)^{-1}$, while Reidemeister $I I I$ adds that g_{o}^{+}and g_{u}^{+}, as well as g_{o}^{-}and g_{u}^{-}, commute. As a result, every component of $Z^{G}(T)$ collapses to the form $g_{o}^{a} g_{u}^{b}$ for some integers a and b, so all the information to bring home is the sig $\cap d$ number of times a given strand crosses over or under any other strand. It will turn out, nevertheless, that a similar procedure yields an amply non-trivial invariant with novel properties.

[^0]$$
\text { A: see Figure } 2 .
$$

1
B: These are lecture notes for talks given by the first author, written and completed by the second. The talks, with handouts and videos, are availisle online at [GWUURL] and [Rogia URL]. See also further

(a) Reidemeister I

Figure 2: The three Reidemeister moves

2 A better invariant: Z^{β}

The invariant that we wish to introduce can be thought of as taking values in a meta-group. This is a generalization of what we call a "group computer":

2.1 Preliminary: A Group Computer

If X is a finite set and G is a group we let G^{X} denote the set of all possible assignments of elements of G to

Figure 3: A typical element of $G^{\{x, y, u, v\}}$
We use the operations of G to implement operations on the computer $G X$ in the For example, define ${ }^{2} m_{x y}^{z}: G^{\{x, y\}} \rightarrow G^{\{z\}}$ using the group multiplication, $\left\{x: g_{1}, y: g_{2}\right\} \mapsto\left\{z: g_{1} g_{2}\right\}$. There are obvious unary operations for inversion, doubling, renaming, deletion and unit insertion, respectively denoted $S^{x}, \Delta_{y z}^{x}, \rho_{x}^{y}, d_{x}$ and e^{y}, and respectively implemented on $C\{x\}$ as $\{x: g\}$ mapping to $\left\{x: g^{-1}\right\}$, $\{y: g, z: g\},\{y: g\},\{ \}$ and $\{x: g, y: e\}$. In addition there is a binary operation for merging data sets, $U: G^{X} \times G^{Y} \rightarrow G^{X \cup Y}$, which takes two data sets P and Q and makes their disjoint union $P \cup Q$.

2.2 Meta-Groups

Coning an clement renaming a register

The operations on a group computer obey a certain set of basic set-theoretic axioms as well as axioms inherited from the group G. A meta-group is an abstract computer that satisfies some but not all of those axioms. We postpone the precise definition to Section 3; it is best to begin with a prototypical example, as follows. Let $G_{X}:=M_{X \times X}(\mathbf{Z})$ denote (not in reference to any group G) the set of $|X| \times|X|$

[^1]$m_{z}^{x y}: G_{\{x, y, w\}} \rightarrow G_{\{z, w\}}$, is defined by simultaneously adding rows and columns labelled by x and y :

One critical way in which this example differs from a group computer is the failure of the axiom

$$
\begin{aligned}
& x \quad y \\
& P \in G_{\{x, y\}}
\end{aligned}
$$

Indeed, if $P \in G_{\{x, y\}}$ is the matrix $\begin{array}{cc}x & y \\ y \\ y & \left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \text {, then }\end{array}$

$$
d_{y} P \cup d_{x} P=\begin{gathered}
x \\
x \\
y
\end{gathered}\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \neq P
$$

2.3 Meta-Bicrossed Products

Suppose a group G is given as the product $G=T H$ of two of its subgroups, where $T \cap H=\{e\}$. Then also $G=H T^{2}$ and every element of G has unique ${ }^{3}$ representations of the form $t h$ and $h^{\prime} t^{\prime}$ where $h, h^{\prime} \in H$ and $t, t^{\prime} \in T$. Accordingly there is a "swap" map sw : $T \times H \rightarrow H \times T,(t, h) \mapsto\left(h^{\prime}, t^{\prime}\right)$ such that if $g=t h$ then $g=h^{\prime} t^{\prime}$ also. The swap map satisfies some relations; in group-computer language, the important ones read

where $t m$ and $h m$ stand for multiplication in T and H respectively. Conversely the data $(H, T, s w)$ determines a group G, called the bicrossed product of H and T, provided that $s w$ satisfies relations (a) and $(\mathrm{b}) \leftarrow+\pi$ few minor relations.

The corresponding notion of a meta-bicrossed product is a collection of sets $\beta(H, T)$ indexed by all pairs you have to of finite sets H and T, and equipped with multiplication maps $t m_{z}^{x y} \cdot h m_{z}^{x y}$ and a swap map $s w_{r y,}^{t h}$ satisfying (a) and (b). A meta-bicrossed product defines a meta-group with $\Gamma_{X}=\beta(X, X)$. A prototypical example Carl fl hart is again given by (now rectangular) matrices, $\mu(H, T):=M_{T \times H}(\mathbf{Z})$, with $i m m_{z}^{x y}$ and $h m_{z}^{x y}$ corresponding to $a b_{\text {or }} t$, adding two rows and adding two columns, and swap being the trivial operation: Which ind ax

[^2]\[

$$
\begin{aligned}
& \underset{\stackrel{h m_{1}^{1,2}}{\longmapsto}}{ } \quad \begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\left(\begin{array}{c}
h_{1} \\
c+b \\
c+d \\
e+f
\end{array}\right) \\
& \begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\left(\begin{array}{cc}
a & b \\
c & d \\
e & f
\end{array}\right) \stackrel{t m_{1}^{1,2}}{\longmapsto} \quad t_{1}\left(\begin{array}{cc}
h_{1} & h_{2} \\
a+c & b+d \\
e & f
\end{array}\right) \\
& \xrightarrow{\stackrel{s w_{1 n}^{t h}}{\longmapsto}} \begin{array}{ll}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\left(\begin{array}{cc}
h_{1} & h_{2} \\
a & b \\
c & d \\
e & f
\end{array}\right) \quad, ~
\end{aligned}
$$
\]

2.4β Calculus

The β calculus has an arcane origin [VIDEO] which is not appropriate to mention here. We expect that it can be presented in a much simpler and fitting context than that in which it was discovered. Accordingly we will simply pull it out of a hat. Let $\beta(H, T)$ be (again, in reference to sets H and T) the collection of arrays with rows labeled by $t_{i} \in T$ and columns labeled by $h_{j} \in H$, along with a distinguished element ω. Such arrays are conveniently presented in the following format

ω	h_{1}	h_{2}	\ldots
t_{1}	α_{11}	α_{12}	\cdot
t_{2}	α_{21}	α_{22}	\cdot
\vdots	\cdot	\cdot	\cdot

The $\alpha_{i j}$ and ω are rational functions of variables T_{i}, which are in bijection with the row labels t_{i}.
$\beta(H, T)$ is equipped with a peculiar set of operations. Despite being repulsive at sight, they are completely elementary. They are defined as follows

$$
\begin{aligned}
& h m_{z}^{x y}: \begin{array}{c|ccc}
\omega & h_{x} & h_{y} & \ldots \\
\hline \vdots & \alpha & \beta & \gamma
\end{array} \mapsto \begin{array}{c|cc}
\omega & h_{\lambda} & \ldots \\
\hline \vdots & \alpha+\beta+\langle\alpha\rangle \beta & \gamma
\end{array} \quad(\text { he <l...). } \\
& s w_{x y}^{t h}: \begin{array}{c|ccc|ccc}
\omega & h_{y} & \ldots & & \\
& t_{x} & \alpha & \beta & h_{y} & \ldots & \ldots \\
& \vdots & \gamma & \delta & & \vdots & \gamma / \epsilon \\
t_{x} & \alpha(1+\langle\gamma\rangle / \epsilon) & \beta(\gamma+\langle\gamma\rangle / \epsilon) \\
& & & & & \delta-\gamma \beta / \epsilon
\end{array} \\
& \text { (sure...) }
\end{aligned}
$$

Here $\epsilon=1+\alpha,\langle\alpha\rangle=\sum_{i} \alpha_{i}$, and $\langle\gamma\rangle=\sum_{i \neq x} \gamma_{i}$. Note also that in $s w_{x y}^{t h}$, the term $\gamma \beta$ is the matrix product of the column γ with the row β and hence has the same dimensions as the matrix δ. We also need the disjoint union, defined by

4

$$
\begin{array}{c|l|l}
\omega_{1} & H_{1} \\
\hline T_{1} & \alpha_{1}
\end{array} \cup \begin{array}{c|c}
\omega_{1} & H_{1} \\
\hline T_{1} & \alpha_{1}
\end{array}=\begin{array}{ccc}
\omega_{1} \omega_{2} & H_{1} & H_{2} \\
\hline T_{1} & \alpha_{1} & 0 \\
T_{2} & 0 & \alpha_{2}
\end{array}
$$

Finally there are two elements which will serve as a pair of "R-matrices", analogous to the pairs $\left(g_{o}^{ \pm}, g_{u}^{ \pm}\right)$ of Z^{G} :

$$
R_{x y}^{+}=\begin{array}{c|cc}
1 & h_{x} & h_{y} \\
\hline t_{x} & 0 & T_{x}-1 \\
t_{y} & 0 & 0
\end{array}
$$

$$
R_{x y}^{-}=\begin{array}{c|cc}
1 & h_{x} & h_{y} \\
\hline t_{x} & 0 & T_{x}^{-1}-1 \\
t_{y} & 0 & 0
\end{array}
$$

$2.5 \quad Z^{\beta}$

Let T be again an oriented tangle diagram. At each crossing, assign a number to the upper strand and to the lower strand. Form the disjoint union $\bigcup_{\{i, j\}} R_{i j}^{ \pm}$where $\{i, j\}$ runs over all pairs assigned to crossings, with i labelling the upper strand and j labelling the lower strand, and where \pm is determined by the sign of the given crossing. Now for each strand multiply all the labels in the order in which they appear. That is, if the first label on the strand is k, apply $g m_{k}^{k l}=s w_{k l} / / t m_{k}^{k l} / / h m_{k}^{k l}$ where l runs over all labels subsequently encountered on the strand (in order). If T has n strands, the result is an $n \times n$ array with corner element. Call this array $Z^{\beta}(T)$.

As an example, for the knot 8^{17} [ROLFSEN] illustrated in Figure 4 , make the disjoint union ${ }^{4} R_{12,1}^{-} R_{2,7}^{-} R_{8,4}^{-} R_{4,11}^{-} R_{16,5}^{+} R_{6,13}^{+} I$ which is given by the following array: $8 / 7$

Then apply the multiplications $g m_{1, k}^{1}$, with k running from 1 to 16 , to get the following 1×1 array with corner element:

$$
\begin{array}{c|c}
-T_{1}^{-3}+4 T_{1}^{-2}-8 T_{1}^{-1}+11-8 T_{1}+4 T_{1}^{2}-T_{1}^{3} & h_{1} \\
\hline t_{1} & 0
\end{array}
$$

Theorem 1. Z^{β} is an invariant of oriented tangle diagrams. Restricted to knots, the corner element is the Alexander polynomial. Restricted to braids, it is equivalent to the Burau representation.
Proof. Later.

One philosophically appealing major property of Z^{β} is that the operations used to compute it have a literal interpretation of gluing crossings together. In particular, at every stage of the computation we get an invariant of the tangle ${ }^{5}$ made of all the crossings but only those for which the corresponding $g m$ was carried out have been glued. \qquad
${ }^{4}$ From now on we omit the \cup in disjoint unions: $\beta_{1} \beta_{2}:=\beta_{1} \cup \beta_{2}$. We also suppress rows/columns of zeros.
${ }^{5}$ the careful reader may wish to peek ahead at Section 3.1 for a better grasp of this statement

Figure 4: The knot 8^{17} with crossings labelled

Figure 5: 8^{17} after attaching crossings 1 through 10. The arcs with green dots can not make it out to the boundary disk.

3 More on meta-groups

3.1 The meta-group of coloured v-tangles

When one tries to follow the interpretation of the computation of Z^{β} as progressively attaching crossings together to form a tangle, one will in general encounter a step where the tangle will become non-planar (a strand will have to go through another in an "artificial" crossing to reach the boundary disk). See Figure 5. Such tangles are called virtual ori-tangles and constitute a rich subject of study on their own. For us it will suffice to give them a name. (A) The ope ration

Armed with this new word in our vocabulary we can now define what seems to " oe the "most natural" meta-group: the meta-group of oriented coloured v-tangles. Let Γ_{X} be the set of v-tangles with strands labelled by X. There is a natural definition for all the meta-group operations. $m_{z}^{x y}{ }^{6}$ concatenates strand x with strand y and labels the resulting strand z (note that we need virtual tangles for this to be well-defined), S^{x} reverses the orientation of strand x, e^{x} creates an isolated strand with label x, d^{x} deletes strand x, and $\Delta_{y z}^{x}$ is the cabling operation with input strand x and output strands y and z. [EXPAND]

[^3]
3.2 Some precise definitions

Axioms lists and checks.

3.3 More examples

Examples $1,2,3,4,5,6,7$, relationship to example ∞.

4 Towards Categorification

4.1 Difficulties with classical Alexander
4.2 Removing denominators

[^0]: ${ }^{1}$ Signs are determined by the "right-hand rule": If the right-hand thumb points along the direction of the upper strand of a positive crossing, then the fingers curl in the direction of the lower strand.

[^1]: ${ }^{2}$ To void cluttering notation, we write $\{x, y\}$ for a set containing x and y, and possibly more elements. We also assume common sense with respect to naming: for instance, if an operation creates the register x, we assume it did not exist before.
 of
 integers

[^2]: ${ }^{3}$ Separation of variables: suppose $g=h_{1} t_{1}=h_{2} t_{2}$. Then we have $h_{2}^{-1} h_{1}=t_{2} t_{1}^{-1}$, which implies that $h_{1}=h_{2}$ and $t_{1}=t_{2}$ fils in since $h_{2}^{-1} h_{1} \in H, t_{2} t_{1}^{-1} \in T$, and $H \cap T=\{e\}$

 $$
 \begin{aligned}
 & \text { Foot 2: Indeed, if } g^{-1}=\text { the ten } g=h^{-1 f^{-1}} \text {, so } g^{-1} \in T H \\
 & \text { implies geT, and as TH=G, also HTEG. }
 \end{aligned}
 $$

[^3]: ${ }^{6}$ Remark: this is not a meta-generalization of the group structure on braids

 $$
 \begin{aligned}
 & \text { A: philosophy must be follow id } d_{6} \text { by a formal definition, } \\
 & \text { or at lest a link to a formal definition. }
 \end{aligned}
 $$

