Caen Menu / Planning Handout June-05-12 8:40 PM | The u \rightarrow v \rightarrow w & p Stories explained sketched could explain could explain, gaps remain more gaps then explains mystery | | | | | | | | |---|---|---|---|--|---|---|--------------------------------| | | Topology | Combinatorics | Low Algebra | High Algebra | Counting Coincidences
Conf. Space Integrals | Quantum Field
Theory | Graph
Homology | | u-Knots — | The <u>u</u> sual Knotted
Objects (KOs) in
3D — braids, knots,
links, tangles,
knotted graphs, etc. | Chord diagrams and Jacobi diagrams, modulo $4T, STU, IHX$, etc. | Finite dimensional
metrized Lie
algebras,
representations, and
associated spaces. | The Drinfel'd theory
of associators. | Today's work. Not
beautifully written,
and some
detour-forcing cracks
remain. | Perturbative
Chern-Simons-
Witten theory. | The "original" graph homology. | | > v-Knots — | <u>V</u> irtual KOs — "algebraic", "not embedded"; KOs drawn on a surface, mod stabilization. | Arrow diagrams and v-Jacobi diagrams, modulo 6T and various "directed" STUs and IHXs, etc. | Finite dimensional
Lie bi-algebras,
representations, and
associated spaces. | Likely, quantum
groups and the
Etingof-Kazhdan
theory of
quantization of Lie
bi-algebras. | No clue. | No clue. | No clue. | | > w-Knots | Ribbon 2D KOs in
4D; "flying rings".
Like v, but also
with "overcrossings
commute". | Like v, but also
with "tails
commute". Only
"two in one out"
internal vertices. | Finite dimensional co-commutative Lie bi-algebras $(\mathfrak{g} \ltimes \mathfrak{g}^*)$, representations, and associated spaces. | The Kashiwara-
Vergne-Alekseev-
Torossian theory of
convolutions on Lie
groups / algebras. | No clue. | Probably
related to 4D
BF theory. | Studied. | | p-Objects | No clue. | "Acrobat towers"
with 2-in many-out
vertices. | Poisson structures. | Deformation
quantization of
poisson manifolds. | Configuration space integrals are key, but they don't reduce to counting. | Work of Cattaneo. | Studied. | ## À la carte Items - 1. The 6-step relationship with convolutions of Lie groups and algebras. - 2. Meta-groups and the Alexander polynomial (results and thei w-origin). - 3. The "Infinitesimal Alexander Module" and the w-invariant of knots. - 4. Quadraticity of the virtual braid group following P. Lee. - 5. Configuration space integrals and Chern-Simons theory. - 6. The Grothendieck-Teichmuller group. - 7. The BHLR "18 spaces of virtual knots". - 8. "Algebraic Knot Theory". - 9. Archibald's MVA for tangles. - 10. Unrelated fun things.