What polynomials \(Q \) have the property that
\[Q : \mathbb{Z}/p \to \mathbb{Z}/p \text{ is invertible for \(\infty \text{ many primes } p \).} \]

"\(Q \) is exceptional"

Question. Does
\[f(x, y) = \frac{Q(x) - Q(y)}{x - y} \]
have zeros in \((\mathbb{Z}/p)^2\) ?

Theorem (Well). If \(f(x, y) \) is irreducible over \(\mathbb{C} \),
\[|\# \{ f(x, y) = 0 \} - p | \leq C \sqrt{p} \]

\[\Rightarrow \]
\[\{ (x, y) : Q(x) = Q(y), \ x \neq y \} \]

\[\Rightarrow \]
\[Q \]
\[\mathbb{C}^p \]

We want the monodromy group of \(Q \) to not be \(2 \)-transitive.
The only exceptional polynomials are \(Z^n \) and Chebyshev polynomials:

\[
T_n(\cos x) = \cos(nx)
\]

or

\[
T_n\left(\frac{z+z^{-1}}{2}\right) = \frac{z^n+z^{-n}}{2} \quad (n \neq 2)
\]