What polynomials Q^{\in} have the property that
$Q: \mathbb{Z} / p \longrightarrow \mathbb{Z} / p$ is invertible for $a-$ many primes p. " Q is exception el"

Question. Dols

$$
f(x, y)=\frac{Q(x)-Q(y)}{x-y}=0
$$

(Probabilistically,
expect p
solutions
have zeroes in $(\mathbb{Z} / \rho)^{2} 2_{0}$
The $($ wail) If $f(x, y)$ is irred our \mathbb{C},

$$
|\#[f(x, y)=0]-p| \leq C \sqrt{p}
$$

$\ldots \int_{0} \frac{Q(x)-Q(y)}{x-y}=0$ must have
sororal components.

$$
\begin{gathered}
\{(x, y): Q(x)=Q(y), \quad x \neq y j \\
\downarrow^{\|} Q \\
\mathbb{C} p^{\prime}
\end{gathered}
$$

We want the monodromy group of Q to not be 2 -transitive.

The only exceptional polynomials are z^{n} k Chebyshur polynomials:

$$
T_{n}(\cos x)=\cos (n x)
$$

or

$$
T_{n}\left(\frac{z+z^{-1}}{2}\right)=\frac{z^{n}+z^{-1}}{2} \quad(r \neq 2)
$$

