Time to resolve the local u->w issue, II

Equations are certainly interpretive and speculative.

\[\Theta \rightarrow V^{-1}V = I \quad V \cdot V^{-1} = I \rightarrow 1 \]

Twist. \[V \cdot \Theta = R_{12} V^{21} \]

or \[\Theta = V^{-1} R_{12} V^{21} \]

or \[V^{21} = R_{12}^{-1} V \Theta \]

Unitarity. \[V \cdot V^* = I \]

Flip. \[V \cdot S(V) = R_{12} \] So \[V^{-1} = S(V) R_{12}^{-1} \] and \[S(V) = V^{-1} R_{12} \]

\[\Phi \rightarrow 2 \]

\[\Phi = V^{-12} V_{123} \cdot V_{23} V_{123} \]

Note: Maybe already in the \(n \)-word there are two types
of vertices, \(\pm k \), that differ just by a \(\Theta \). They would be twist-equivalent in the Drinfeld sense, yet they'd look different given caps.

Also, how do \(w \)-framings come in? More precisely, how do framings interact with vertices and unzips?

\[
S(V^2) = S(R_{12}^{-1} V \Theta) = \Theta S(V) R_{12}^{-1} = \Theta V^{-1} R_{12} R_{12}^{-1} = \Theta V^{-1}
\]

News! The "top delete" equation is about managing \(a(\emptyset) \) where even the \(w \)-vertices are chiral.