1. Hend Multiply

$\ln [8]=\{\mathrm{b}=\mathrm{B}[\omega, \alpha \mathrm{t}[1] \mathrm{h}[1]+\beta \mathrm{t}[2] \mathrm{h}[2]]$,
b // hm [1, 2, 1],
b // J,
b // J // hm[1, 2, 1], b // J // hm[1, 2, 1] // K
\}
Out $[8]=\left\{\begin{array}{ccc}\omega & \mathrm{h}[1] & \mathrm{h}[2] \\ \mathrm{t}[1] & \alpha & 0 \\ \mathrm{t}[2] & 0 & \beta\end{array}\right),\left(\begin{array}{cc}\omega & \mathrm{h}[1] \\ \mathrm{t}[1] & \alpha \\ \mathrm{t}[2] & \beta+\alpha \beta \mathrm{c}_{1}\end{array}\right)$,

$$
\left.\left(\begin{array}{ccc}
\omega & \mathrm{h}[1] & \mathrm{h}[2] \\
\mathrm{t}[1] & \frac{-1+\mathrm{e}^{\alpha c_{1}}}{c_{1}} & 0 \\
\mathrm{t}[2] & 0 & \frac{-1+e^{\beta c_{2}}}{c_{2}}
\end{array}\right),\left(\begin{array}{cc}
\omega & \mathrm{h}[1] \\
\mathrm{t}[1] & \frac{-1+\mathrm{e}^{\alpha c_{1}}}{c_{1}} \\
\mathrm{t}[2] & \frac{e^{\alpha c_{1}}\left(-1+e^{\beta c_{2}}\right)}{c_{2}}
\end{array}\right),\left(\begin{array}{cc}
\omega & \mathrm{h}[1] \\
\mathrm{t}[1] & \frac{\left(-1+e^{\left.\alpha c_{1}\right)\left(\alpha c_{1}+\beta c_{2}\right)}\right.}{\left(-1+e^{\left.\alpha c_{1}+\beta c_{2}\right) c_{1}}\right.} \\
\mathrm{t}[2] & \frac{e^{\alpha c_{1}}\left(-1+e^{\beta c_{2}}\right)\left(\alpha c_{1}+\beta c_{2}\right)}{\left(-1+\mathrm{e}^{\alpha c_{1}+\beta c_{2}}\right) c_{2}}
\end{array}\right)\right\}
$$

2. Feobback swap.

$\ln [10]:=\{b=B[\omega, \alpha t[1] h[1]+\beta t[1] h[2]+\delta t[2] h[2]]$,
b // thswap[1, 1],
b // J // thswap[1, 1] // K
\}
Out[10] $=\left\{\left(\begin{array}{ccc}\omega & \mathrm{h}[1] & \mathrm{h}[2] \\ \mathrm{t}[1] & \alpha & \beta \\ \mathrm{t}[2] & 0 & \delta\end{array}\right),\left(\begin{array}{ccc}\omega+\alpha \omega \mathrm{c}_{1} & \mathrm{~h}[1] & \mathrm{h}[2] \\ \mathrm{t}[1] & \alpha & \beta \\ \mathrm{t}[2] & 0 & \delta\end{array}\right),\left(\begin{array}{cc}\mathrm{e}^{\alpha \mathrm{c}_{1}} \omega & \mathrm{~h}[1] \\ \mathrm{t}[1] & \alpha \\ \mathrm{t}[2] & \beta \\ \mathrm{t}[2] & 0\end{array}\right) \delta\right.$,

3. Non-fuluback swap.

$\ln [11]:=\{b=B[\omega, \beta t[1] h[2]+\gamma t[2] h[1]]$,
b // thswap[1, 1],
b // J // thswap[1, 1] // K
\}

