Classification of Flat Virtual Pure Tangles and Basis for its Associated Graded Algebra Karene Chu, May 18 2012

Why do we care about virtual knots?

- Virtual Knots generalize classical knots; in fact, classical knots inject into virtual knots.
- Any quantum invariant for classical knots extend to virtual knots (a variant), so virtual knots may be a more natural domain for quantum invariants.

Definition - Virtual Knots

Usual Knots diagrams: Planar directed graphs with only crossings.

Crossings: tetravalent vertex with cyclically ordered edges, opposite edges paired ordered, and signed

Relations:

Virtual Knot Diagrams: Directed graphs with only crossings as vertices.

Our Subject: Flat Virtual long knot, i.e. the skeleton is a line.

Theorem 1 [C./conjectured by Bar-Natan] (Classification of Flat Virtual Long Knots, $\ell \mathcal{K}$) Flat virtual long knots are in bijection with the canonical diagrams \mathcal{C} . σ : $\sigma(1) = (3, -)$

 $\sigma(2) = (1, +)$

where these not allowed:

Remarks:

- generalizes easily to multiple (labelled) strands (pure tangles).
- Invariants for virtual long knots/pure tangles.
- Topological: immersed curves on surfaces with a circle boundary where curves end on the boundary modulo adding and removing empty handles/
- Invariant for the flat virtual braid group $(\sigma_{ij} | \sigma_{ij} \sigma_{ik} \sigma_{ik} = \sigma_{ik} \sigma_{ik} \sigma_{ij}, \sigma_{ij} \leftrightarrow \sigma_{kl}, \sigma_{ij} = \sigma_{ij}^{-1})$ Conjecture: flat braids inject into flat tangles.

Sketch of Proof Thm 1: 2-dim Induction.

 There is a 2-d parameter space (# illegal intervals, # crossings) such that sorting moves would move in a "lowering direction."

- the non-trivial part: show that different sequences of sorting moves lead to the same result by using relations between relations (see big diagram next page) in the diamond lemma.
- easy: well-defined under all R-moves.

Which "Associated Graded"?

The target space of a *universal finite-type* invariant, the one associated to the filtration by (generalized) powers of the (generalized) augmentation ideal.

Why do we care?

For knots, v-knots, these are related to Lie-algebras: given any finite-dim Lie (bi-) algebra, there is a map from these into tensors of the enveloping algebras.

Definition (The Associated Graded Space)

Main Theorem 2 [C., conj. by Bar-Natan] Basis for the associated graded spaces

Basis $\mathcal{A}^{fb} = \begin{cases} 1-1 \\ (1,2,3,4,5) \\ \mapsto (2,4,1,5,3) \end{cases}$

Remarks

- generalizes to n-strand skeleton.
- Variants of flat virtual knots: {All R23} / {braid-like R23}, R1/R1 and we obtain basis for their associated graded spaces
- \mathcal{A}^{fb} , and the other variants, for fixed n are in particular associative algebras; and for all n, there is a richer gluing structure.
- A generalized Grobner basis for the horizontal algebra, which is the enveloping algebra of some Lie algebra, while a usual Grobner basis could not be found.

Idea of Proof for Main Theorem 2: Gröbner basis for Chord Diagram Algebra

Generalize Grobner basis for associative algebras to chord diagrams algebras with the gluing structure. The main idea is to define a partial ordering on diagrams and require that it to be respected by the gluing structure, and have unique leading terms in relations and syzygies.

A Syzygy (relation of relation):

and the sum is over 4 ways of placing 6T and for each way 3 ways of placing one end of the arrow on the strands touched by the 6T.

