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Why do we care about virtual knots?

« Virtual Knots generalize classical knots; in fact,
classical knots inject into virtual knots.

¢ Any quantum invariant for classical knots extend
to virtual knots (a variant), so virtual knots may
be a more natural domain for quantum invariants.

Definition - Virtual Knots

Usual Knots diagrams: Planar directed graphs
with only crossings.

Crossings: tetravalent vertex with cyclically ordered
edges, opposite edges paired ordered, and signed

Remarks:

e generalizes easily to multiple (labelled) strands
(pure tangles).

e Invariants for virtual long knots/pure tangles.

e Topological: immersed curves on surfaces with a
circle boundary where curves end on the boundary
modulo adding and removing empty handles/

¢ Invariant for the flat virtual braid group
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Sketch of Proof Thm 1: 2-dim Induction.

e There is a 2-d parameter space ( # illegal
intervals, # crossings) such that sorting moves
would move in a "lowering direction."
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Virtual Knot Diagrams: Directed graphs with only
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e the non-trivial part: show that different sequences
of sorting moves lead to the same result by using
relations between relations (see big diagram next
page) in the diamond lemma.

e easy: well-defined under all R-moves.
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Our Subject. Flat Virtual long knot, i.e.
the skeleton is a line.
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Theorem 1 [C./conjectured by Bar-Natan]
(Classification of Flat Virtual Long Knots,
Flat virtual long knots are in bijection with the

canonical diagrams C. G: 6(1)=(3.-)
6(2)=(1,+)
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Which "Associated Graded"?

The target space of a universal finite-type
invariant, the one associated to the filtration by
(generalized) powers of the (generalized)
augmentation ideal.

Why do we care?

For knots, v-knots, these are related to
Lie-algebras: given any finite-dim Lie (bi-) algebra,
there is a map from these into tensors of the
enveloping algebras.

Definition (The Associated Graded Space)
< mz\ ‘6T (from R3)>

+

6T := +




Main Theorem 2 [C., conj. by Bar-Natan]
Basis for the associated graded spaces
, fb_ -1 (1,2,3,4,5)
Basis = { f/f% }<H> { > (2.4.1,5,3)
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Remarks

e dim .4 ft]=n!.

e generalizes to n-strand skeleton.

¢ Variants of flat virtual knots: {All R23} /
{braid-like R23}, R1/R1 and we obtain basis for
their associated graded spaces

o 4 fb, and the other variants, for fixed n are in
particular associative algebras; and for all n, there
isa richer gluing structure.

¢ A generalized Grobner basis for the horizontal
algebra, which is the enveloping algebra of some
Lie algebra, while a usual Grobner basis could not
be found.

Idea of Proof for Main Theorem 2:

Grobner basis for Chord Diagram Algebra
Generalize Grobner basis for associative algebras
to chord diagrams algebras with the gluing
structure. The main idea is to define a partial
ordering on diagrams and require that it to be
respected by the gluing structure, and have unique
leading terms in relations and syzygies.

A Syzygy (relation of relation):

6T-6T = > [[foJ ] =0
1= 1 - [

and the sum is over 4 ways of placing 6T and
for each way 3 ways of placing one end of the
arrow on the strands touched by the 6T.

where

Relation between the Group-Finger relations:
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