\$100 Bounty on Polynomiality of the Meta-Group Computation
April-01-12 5:42 PM
Date: Sun, 1 Apr 2012 17:43:17 -0400 (EDT)
From: Dror Bar-Natan <drorbn@math.toronto.edu></drorbn@math.toronto.edu>
 To: <> Subject: \$100 Bounty.
Dear All,
A \$100 bounty is hereby offered to the first to prove that when the meta-group
invariant is computed as in
http://www.math.toronto.edu/~drorbn/Talks/GWU-1203/, in every step of the
computation every entry in the matrix part of the invariant is a Laurent
 polynomial divided by the \omega part of the invariant. To count, the proof
must be inductive - some conditions must be places on the invariant at step k
that imply the said polynomiality and also that those same conditions are also
satisfied at step k+1.
Best,
Dror.