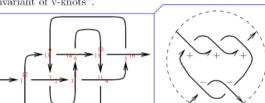
Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 1

Dror Bar-Natan at Knots in Washington XXXIV

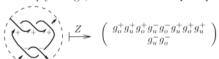
Abstract. A straightforward proposal for a group-theoretic Bicrossed Products. If G = HT is a group invariant of knots fails if one really means groups, but workspresented as a product of two of its subgroups, with $H \cap T$ once generalized to meta-groups (to be defined). We will con- $\{e\}$, then also G = TH and G is determined by H, T, and struct one complicated but elementary meta-group as a meta-the "swap" map $sw^{th}:(t,h)\mapsto (h',t')$ defined by th=h't'bicrossed-product (to be defined), and explain how the re-The map sw satisfies (1) and (2) below; conversely, if swsulting invariant is a not-yet-understood generalization of the $T \times H \to H \times T$ satisfies (1) and (2) (+ lesser conditions) Alexander polynomial, while at the same time being a spe-then (3) defines a group structure on $H \times T$, the "bicrossed cialization of a somewhat-understood "universal finite typeproduct".

invariant of w-knots" and of an elusive "universal finite type invariant of v-knots".



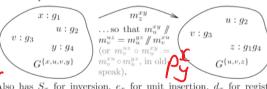
"divide and conquer"

Idea. Given a group G and two pairs $R^{\pm} = (g_o^{\pm}, g_u^{\pm}) \in G^2$, map them to xings and "multiply along", so that



This Fails! R2 implies that $g_o^{\pm}g_u^{\mp}=e$ and then R3 implies that g_o^+ and g_u^+ commute, so the result is a simple counting

A Group Computer. Given G, can store group elements and perform operations on them:

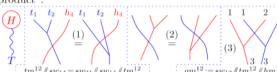


Also has S_x for inversion, e_x for unit insertion, d_x for register Theorem. Z^{β} is a tangle invariant (and even more). Re-

structure is unknown to us. Namely it is a collection of sets rau representation. $\{G_X\}$ indexed by all finite sets X, and a collection of opera-Why Happy? • Applications to w-knots. tions m_x^{xy} , S_x , e_x , d_x , Δ_{xy}^z and \cup , satisfying the exact same • Everything that I know about the Alexander polynomial properties.

Example 1. The non-meta example, $G_X := G^X$.

column operations.



A Meta-Bicrossed-Product is a collection of sets $\beta(H,T)$ and operations tm_z^{xy} , hm_z^{xy} and sw_{xy}^{th} (and lesser ones), such that tm and hm are "associative" and (1) and (2) hold (+ lesser conditions). A meta-bicrossed-product defines a meta-group with $G_X := \beta(X, X)$ and gm as in (3).

 β Calculus. Let $\beta(H,T)$ be

$$\left\{ \begin{array}{c|ccc} \omega & h_1 & h_2 & \cdots \\ \hline t_1 & \alpha_{11} & \alpha_{12} & \cdot \\ t_2 & \alpha_{21} & \alpha_{22} & \cdot \\ \vdots & \cdot & \cdot & \cdot \\ \end{array} \right. \begin{array}{c|cccc} h_j \in H, \, t_i \in T, \, \text{and} \, \omega \, \text{and} \\ \text{the} \, \alpha_{ij} \, \text{ are Laurent poly-} \\ \text{nomials in variables} \, T_i, \, \text{in} \\ \text{bijection with the} \, t_i \text{'s} \end{array} \right\}$$

with operations $tm_z^{xy}: \begin{array}{c|c} \hline \omega & \cdots \\ \hline t_x & \alpha \\ t_y & \beta \end{array} \mapsto \begin{array}{c|c} \hline \omega & \cdots \\ \hline t_z & \alpha+\beta \\ \vdots & \gamma \end{array}$

$$hm_z^{xy}: \begin{array}{c|cccc} \omega & h_x & h_y & \cdots \\ \vdots & \alpha & \beta & \gamma \end{array} \mapsto \begin{array}{c|ccccc} \omega & h_z & \cdots \\ \vdots & \alpha+\beta+\langle \alpha \rangle \beta & \gamma \end{array},$$

$$sw_{xy}^{th}: \begin{array}{c|cccc} \omega & h_y & \cdots \\ \hline t_x & \alpha & \beta \\ \vdots & \gamma & \delta \end{array} \mapsto \begin{array}{c|cccc} \omega\epsilon & h_y & \cdots \\ \hline t_x & \alpha(1+\langle\gamma\rangle/\epsilon) & \beta(1+\langle\gamma\rangle/\epsilon) \\ \vdots & \gamma/\epsilon & \delta-\gamma\beta/\epsilon \end{array},$$

where $\epsilon := 1 + \alpha$, $\langle \alpha \rangle := \sum_{i} \alpha_{i}$, and $\langle \gamma \rangle := \sum_{i \neq x} \gamma_{i}$, and let

$$R^p_{xy} := \begin{array}{c|cccc} 1 & h_x & h_y \\ \hline t_x & 0 & T_x - 1 \\ t_y & 0 & 0 \end{array} \qquad R^m_{xy} := \begin{array}{c|cccc} 1 & h_x & h_y \\ \hline t_x & 0 & T_x^{-1} - 1 \\ t_y & 0 & 0 \end{array}.$$

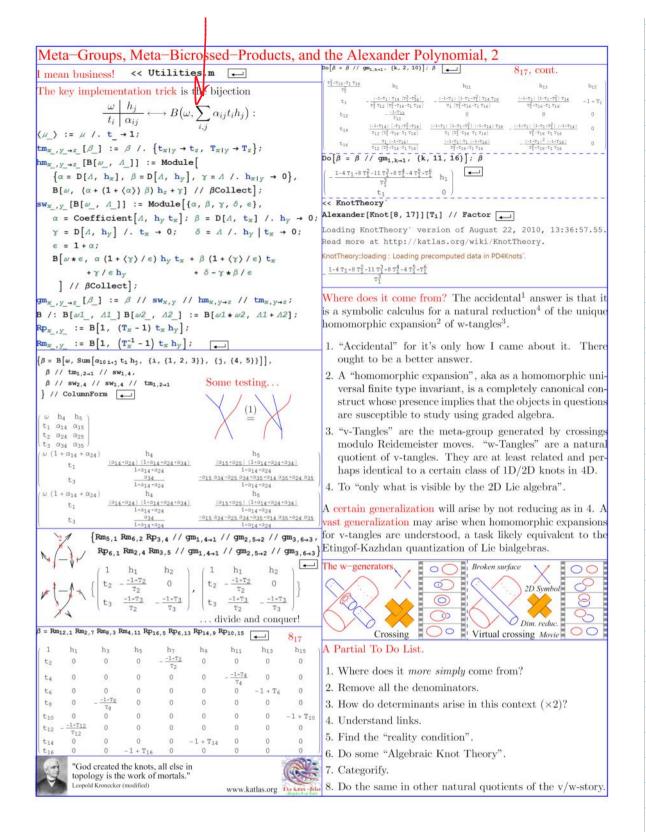
deletion, Δ_{xy}^z for element cloning, and $(D_1, D_2) \mapsto D_1 \cup D_2$ for stricted to knots, the ω part is the Alexander polynomial merging, and very many obvious composition axioms relating these Restricted to links, it contains the multivariable Alexander A Meta-Group. Is a similar "computer", only its internal polynomial. Restricted to braids, it is equivalent to the Bu-

can be expressed cleanly in this language (even if without proof), except HF, but including genus, ribbonness, cabling, Example 2. $G_X := M_{X \times X}(\mathbb{Z})$, with simultaneous row and v-knots, knotted graphs, etc., and there's potential for vast generalizations.

Fits on one sheet, including implementation.

 $A=\geq \alpha_i + i h_i$

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 2



WK= printart @,,,