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Mcta—Groups, Meta—Blcrossed—Products, and the Dror Bar—Natan at Knots in Washington XXXIV £
Alexander POIynOlnial, l http:/ fwww.nath, toronte. edu/ drorbe/Talks /GWU- 1203/
IWbstract. A straightforward proposal for a group-theoretidBicrossed Products. If G = HT is a group
invariant of knots fails if one really means groups, but workspresented as a product of two of its subgroups, with H T =
mee generalized to meta-groups (to be defined). We will con{e}, then also ¢ = TH and G is determined by H, T, anc
ktruct one complicated but elementary meta-group as a meta-the “swap™ map sw'™ : (£, h) +— (b, 1) defined by th = h't’
bicrossed-product (to be defined), and explain how the re{T'he map sw satisfies (1) and (2) below; conversely, if sw
kulting invariant is a not-yet-understood generalization of thel' x H — H x T satisfies (1) and (2) (+ lesser conditions)
lexander polynomial, while at the same time being a spe-then (3) defines a group structure on H x 7', the “bicrossed
cialization of a somewhat-understood “universal finite typ(p_l_'()_cl_uf‘t"

invariant of w-knots” and of an elusive “universal finite typc
invariant of v-knots”.
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A Meta-Bicrossed-Product is a collection of sets G({H, T7) anc

sperations tmt?, hmt” and sw!” (and lesser ones), such that

/\ ,° m oand hm are “associative” and (1) and (2) hold (+ lesser|

4 ~ -onditions). A meta-bicrossed-product defines a meta-grouj
“divide ;,ﬂ(l_(-numm-“ with Gy = G(X, X) and gm as in (3).
. N RS - k_ N i Caleulus. Let 3(H,T) be
- h —W S = w | hy  hy - hje H t; €T, and w and
h h ti o oz - |the o ; are Laurent poly-
[dea. Given a group G and two pairs t2 |21 22 - | pomials in variables T, in

bijection with the ¢;’s

IR+ = (gF.¢F) € G?, map them to ~<111g~. ’/
and ¢ 1n|11l1plv along”, so that
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[This Fails! R2 implies that gf_ F = e and then R3 implies Y w | e Ry oo w | h.
at ot and ot o ) et s a g - vty —
:llllilil :ig.r;)m.md g, commute, so the result is a simple counting : | a B ~ : | a+B+ (@B ~
w |y e we h, s
A Group {"‘-(}IIIITHH‘]', Given G, can store group elements and sl . 1 | (_:I B . i | all + -{”\’)}f]f) B+ M/e)
perform operations on them: Ty )
/:'”\s- S] /e d—3/fe
m
-0 that m= J vhere € := 1+ a, (a) := >, o and (y) := 3. 7, and let
Yo _ m ’?”'J ) 1 |h, by
Glowon ) et DX Ry=T0 [0 T, T Ry, [0 T 1.
ak). ty| 0 0 ty | 0 0

|
; /glﬁu has S, for inversion, e, for wnit insertion, d; for registerTheorem.  Z7 is a tangle invariant (and even more). Re-
d.letllrm, A7, for element (7_1(’11"1?"' "“d_{lDl‘D"—’) — D IU Dy forgg ieted to knots, the w part is the Alexander polynomial

merging, and very many obvious composition axioms relating thesefp 2000 0 links. it contains the multivariable Alexander
s, it contains the dvariable Alexande

A Meta-Group. Is a ~.imil-u‘ “computer”, only its internalpolynomial. Restricted to braids, it is equivalent to the Bu-

ktructure is unknown to us. Nganely it is a collection of setgran representation.
{G v} indexed by all finite )i,_ and a collection of operaWhy Happy? e Applications to w-knots.
\-? tions m:”, Sy, ep, do, AL, 3 U, satisfying the exact same® Everything that I know about the Alexander polynomial

pmpml.m.».. :an be expressed cleanly in this language (even if without
- o, . R 5 . - - A . oo ralhli
Example 1. The non-meta example, Gy := G, proof), except HF, but including genus, ribbonness, cabling
Example 2. Gy = My, x(Z), with simultancous row andv-knots, knotted graphs, etc., and there’s potential for vast
:olumn operations. gencralizations.

e Fits on one sheet, including implementation.
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| mean business! << Utilitiesim

817

BolB = B /7 gmyzus (K, 2,10)]7 B |4 , cont.

( bijection

e B(w,Z(v,-jtillj) :

£

I'he key implementation trick is
w | hy
ti | aij

(u ) ul.o t_»1;

tmye .y oz [B] i= B /. {txiy =+ tz, Txiy > T:}:

bhmy ,y .z [B[«_, 4 ]] := Module|

{a= D[4, hel, B=D[4, hy], ¥=4 /. hyy - 0},

Blo, (a+ (1+(a))B) h:+v] // BCollect];:

swy ,y [B[¢_, 4]] := Module[{a, 8, ¥, 6, €},

@ = Coefficient[/l, hy t,]; B =D[4, tx] /. hy » 0;
¥ =D[4, hy] /. tx = 0; S5 =4/. hy|tx =+ 0;
e =1l+a;
Bluxe, a (L+(¥)/€)hyty + B (L+(¥)/¢€) tx
+Yy/ehy + d-y*f/e
] 77 Bcollect]:
g, 4z [B] i= B /) swx,y // bmg,yor /] tmg,yazi

/: Blwl_, A1_]Blw2_, 42_]
i= B[1, (Tx-1) txhy];

= B[1, (T3'-1) txhy];

= Blelsw2, Al+A2);
X 1Y

X _ Y

_1»t-r,.srf.nri-ar{-nri-rl by
B
ty 0|

<< KnotTheory’
Alexander [Knot[8, 17]][Ty] // Factor

Loading KnotTheory' version of August 22, 2010,
Read more at http:

13:36:57.55.
//katlas.org/wiki/KnotTheory.
KnotTheory:loading : Loading precomputed data in PD4Knots

| 1-473-87{-117]-87]-47}-1§
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Where does it come from? The accidental! answer is that it
is a symbolic calculus for a natural reduction® of the uniquc
homomorphic expansion? of w-tangles®.

1. *Accidental” for it’s only how I came about it. Therc

{8 = Blo, sum[aios.s tahy, {1, {1,2,3}}, (3, (4, 5}}]],
B // tmy 2. // swia,

A ” -~ o teuily 2. A *homomorphic expansion”, aka as a homomorphic uni-
swz,4 swy 4 241 Some testing. .. i : A Z A
} 7/ ColumnForm versal finite type ll’l\’dl'.l:lllt,. is a comple t(,!y canoni al con
’ struct whose presence implies that the objects in questions
w hy hs (=) are susceptible to study using graded algebra.
ty ayq a5 a &« .
o e e 3. “v-Tangles” are the meta-group generated by crossingd
t3 aae ass modulo Reidemeister moves. “w-Tangles” are a natura
(@il anTan) s v,r_':wm ey desiacs ﬁjwm‘m quotient of v-tangles. They are at least related and perd
t 2 ) : ; A 2
: 1-aie-aze 1-334-a2¢ haps identical to a certain class of 1D/2D knots in 4D.
ts por ey N s . i
t-ags-aze 1-a14-a24 4. To “only what is visible by the 2D Lie algebra™.
w (1 +ayq+az) hy hs : N
a14-324) (1-a34-a24+334) laggeags) (1eayqeagy-azy) " W — . .
prprr 1-a18-324 A certain generalization will arise by not reducing as in 4.
© A cert lizat Il arise by not reducing & 1. A
ta Teayseazs Loayge0ze vast generalization may arise when homomorphic expansions

ought to be a better answer,

{Rms,1 Rmg, > Rp3 4 // Wy 401 // GMa 5.2 // W3 6u3,

\/ Rpg,y Rmp, g Rma,s // gmy 4,1 // gmp 5.2 // 9my 6.3}

-._J
(1 hy hz (-1 h; hz =l
ts e v 0 ts Bt i v & 0
, —_ 1\ { T2 ’ T2 }
\ ta zlsT3 _-1.T3 ta bt St I L i<
T2 T3 T2 T3

. divide and conquer!

for v-tangles are understood, a task likely equivalent to th

8 = Rmyz, 3 Rmp 7 Rmg,3 Rmy, 11 RPyg,5 RPg,13 RP14,9 RP10,15

| 87

1 hy h3 hs hy hg hiy hys his

t2 0 0 0 = ’TZTZ 0 0 0 0

ty 0 0 0 0 0 - ‘Tft 0 0

te 0 0 0 0 0 0 -1+Ts 0

ts 0 = ‘T:ﬂ 0 0 0 0 0 0
0 0 0 ()} 0 0 0 -14Ty

-t 0 0 0 0 0 0 0

Ti2
0 0 0 0 -1+Tie O 0 0
0 0 -1+Ti¢ O 0 0 0 0

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)

WA Partial To Do List.

Etingof-Kazhdan quantization of Lie bialgebras.
The w—gcncralors\ o dii Broken surface E Qo ?
: 03 :: 2D S wnhol: C/O g
Dy x E O x -
s -] > M - e R
O - @ :: Dim. reduc. : ) :
Crossing = OO 5! Virtual crossing Movien & O J

. Where does it more simply come from?

I

. Remove all the denominators.

s
[

How do determinants arise in this context (x2)?
. Understand links.
. Find the “reality condition”.
. Do some “Algebraic Knot Theory™.
. Categorify.

00 =1 & O W

. Do the same in other natural quotients of the v/w-story.
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