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Meta—Groups, Meta—Bicrossed—Products, and the Dror Bar—Natan at Knots in Washington XXXIV \
Alexander POlyI‘lO]‘l‘lial, l Bttp:/fwww.nath, torento. edu/ drorbn/Talke /GWU- 1203/
Abstract. A straightforward proposal for a group-theoretiqBicrossed Prodents. If G = HT is a group
invariant of knots fails if one really means groups, but workspresented as a product of two of its subgroups, with H N1 =
once generalized to meta-groups (to be defined). We will con-{e}, then also G = TH and G is determined by H. T, and
struct one complicated but elementary meta-group as a metadthe “swap” map sw'™ : (£, h) — (B, ') defined by th = h't’
bicrossed-product (to be defined), and explain how the re{I'he map sw satisfies (1) and (2) below; conversely, if suw
kulting invariant is a not-vet-understood generalization of thel” x H — H x T satisfies (1) and (2) (+ lesser conditions),
IAlexander polynomial, while at the same time being a spe-then (3) defines a group structure on H x T, the “bicrossed
cialization of a somewhat-understood “universal finite typoproduct™.

invariant of w-knots” and of an elusive “universal finite typc C%\' trotr ha by by ha

invariant of v-knots”.
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A Meta-Bicrossed-Product is a collection of sets F(H, T') and
operations tm2, hm¥ and sw! (and lesser ones), such that
tm and hm are “associative” and (1) and (2) hold (+ lesser
onditions). A meta-bicrossed-product defines a meta-grouy

with Gy = 9(X, X) and gm as in (3).

/R‘E h R3 L_ N J Calculus. Let 3(H,T') be
( . - o —\ /= N W | hy hy - |h._,- e H. t; €T, and w and
fy o o1z - | the j are Laurent poly-
]:1;;1. Giinn a gmn!; G and two pairs N " P p to | o1 @22 - | pomials in variables T:. in
R+ = (g5.9;) € G*, map them to xings = e : . . .| bijection with the #;'s
and “multiply along”, so that AN Vah'a
f&:\’)‘ + gt gt a—a— gt atat . . .
L Gt i W Z Yo Ju o u Jo Gu 9o Ju ) with operations tm?" :
\ \, [ 9o
LN
N
T'his Fails! R2 implies that gFgl = e and then R3 implies S | he hy,
that r;;r and g commute, so the result is a simple counting 7" : I a 8 -~ = : I atB+()f A
invariant.
- ” = ” w | fy - We | hy, e
A\ (,Imnp (_.(:1u|3u|v1. Given (¢, can store group clements anc s Ll B o b |a(l+ (/e B+ )/
perform operations on them: u . } i '
/——\ S /e §—~i/e
mty
.0 that m=¥ where € := 1+ a, (o) == 37, aj, and {y) := 3", 7, and let
my® =md* fm
Y (or mi* o miY P m =T
Glemow) mE% am¥ . in old = t, 10 T, 1 ey = e | 0T 1.
speak). ty, 0 0 ty 0 0

(Also has 5, for inversion, e, for unit insertion, d,. for registerTheorem. Z9 is a tangle invariant (and much more). Red
deletion, A% for element cloning, and (D, Ds) — Dy U Dy for

Ty

. . N : . stricted to knots, the w part is the Alexander polynomial
fLierene, and VOry Hany obvious l‘.UlllleSl' ion axioms relat g these,

Restricted to links. it contains the multivariable Alexander
A Meta-Group. s a similar “computer”, only its internalpolynomial. Restricted to braids, it is equivalent to the Bus

structure is unknown to us. Namely it is a collection of setstau representation.
{G x } indexed by all finite sets X, and a collection of opera{"Why Happy? e Applications to w-knots. e Everything that
tions mt?. S,. e, d,, Az, and U, satisfying the exact samal know about the Alexander polynomial can be expressed,

[properties. cleanly in this language (even if without proof), except HIV
lFxample 1. The non-meta example, Gy = [ea but including genus, ribbonness, cabling, v-knots, knotted,
FExample 2. Gy = My (%), with simultancous row andgraphs, ete., and there’s potential for vast generalizations,

olumn operations. dy[:lvé o1 AQry, qu_ﬂl'} /A (‘/f/]//i? ]IVV; u"]c,77?¢,{3),—
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I mean business!

<< Utilities.m

817, cont.

PolB = B 77 gmy yx, (k,2,10}]; B [ o0

>
ftm,
.

The key implementation trick is the bijection

w h,' .
% Tois ¢ >B(u,.izjn,}f.,hj) :
Yo Ly & oy ’
.y_-ox_[ﬂ_] s= g /. {txly"tz: Txly"Tz}"
,y oz [Bl@_, 4 ]] := Module|

{a= D[4, be], B=D[4, hy], ¥ =4 /. hyy » 0},
Blw, (a+ (1+{(a)) B)h:+¥] // 5Collect],‘

hiy s |
imedine gL
T d|

<< KnotTheory"

Alexander [Knot[8, 17]][Ty] // Factor
[Loading KnotTheory' version of August 22, 2010,
Read more at http://katlas.org/wiki/KnotTheory.

13:36:57.55.

KnotTheory:loading : Loading precomputed data in PD4Knots".
1-4 738 13-117§.8 7§ -4 731§
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Where does it come from? The accidental! answer is that it
is a symbolic calculus for a natural reduction® of the unique
homomorphic expansion? of w-tangles?,

1. *Accidental” for it's only how I came about it. Therd

} // ColumnForm

swy_,y [Ble, 41] := Module[(a, B, ¥.,8,e},
a = Coefficient[4, hy tx]; B = D[4, tx] /. hy » 0;
¥ =D[4, hy] /. tx 2 0; 6 =4/. hy|tx » 0;
e =1+a;
Blwse, a (1+(¥)/€)hyty + B (1+(¥)/€) tx
+Y/ehy + S-yxpB /e
] 77 Bcollect]:
gmx_‘y_,,_[ﬁ_] = B /] swx,y /] hmy v /) Ty, pazi
/: Blwl_ , A1 1 Blw2 , A2 ] := Blwlxw2, Al+A2];
x ,y. = B[1, (Tx-1) txhy]:
e,y 2= B[1; (T2-1) tehy]: [
{B = Bw, Sum[ai01.3 ts by, {i, {1, 2, 3}}, {3, {4, 5}}]].
B /! tmy, 2.1 // swig,
B // swa,4 // swy,s // tmy 2. Some lmtiug‘...

e

w hg hsg
ty apy s
2 azg azs
\t3 azg ags
(W (1+ayq +az) hq hs \
ty 214-024) (1-0)4+029-034 a15+as) (1-334+324-034)
leag4a2q beaygeazy
ts g T35 2347325 0347335714 3357004 235
1-o14+a2q Leayq-a2q
w (1 +ay4 +a24) hy hg
ty a1q-apg) (1-a34+ap4-034 ayneags) (1+ayg-apg-a3q)
1-a14+a24 1+a14+324
t} 234
leay4+a2y 1ea34+324

ought to be a better answer.

. A “homomorphic expansion”™, aka as a homomorphic uni
versal finite type invariant, is a completely canonical con-
struct whose presence implies that the objects in questiong
are susceptible to study using graded algebra.

. “v-Tangles” are the meta-group generated by crossingq
modulo Reidemeister moves. “w-Tangles” are a natural
quotient of v-tangles. They are at least related and perd
haps identical to a certain class of 1D/2D knots in 4D.

4. To “only what is visible by the 2D Lie algebra”.

A certain generalization will arise by not reducing as in 4. Al
vast generalization may arise when homomorphic expansions

{Rms,1 Rmg,2 Rp3,4 // gmy 401 // GWg,5,2 // 93, 6.3,

for v-tangles are understood, a task likely equivalent to the

N\, j{ v Rpg,; Rmp, 4 Rma,s // gmy 4.1 // 9mp 5.2 // gm3, 6,3 }Etingof-Kazhdan quantization of Lie bialgebras.
(1 hy ha 1 hy ha (=] A Partial To Do List.
Els e =22 e =R 9 ; : ; o 3
{ T2 . T2 } 1. Where does it more simply come from?
ts ~1+T e -T]A 5 =1.T, i -1-T3 V
A = (WL \RnJ Ay 2. Remove all the denominators.
ff = Rmy2 3 Rmg 7 Rmg, 3 Rmg, 11 RPyg s RP6,13 RP1g,9 RB10,28 511 o 6 5 W ;
817 3. How do determinants arise in this context (x2)?
1 hy h3 hg hy hg hyy his hys .
&2 0 5 o -Lm 5 3 5 4. Understand links.
b 0 0 0 o o -Lm 0 5. Find the “reality condition”.
te 0 0 0 0 0 0 -14T¢ O 6. Do some “Algebraic Knot Theory™.
ts 0 iy 0 0 0 0 0 0 <
i /- Vnderstand ant
tw 0 0 0 0 0 0 0 -1+Typ
g = g 0 0 0 0 0 0 8. Categorify.
tu 0 0 0 0 -1+4Tyy O 0 0
tig 0 0 -1+Tie 0 0 0 0 0
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