Burda@GSS: How to solve a quintic polynomial?

$$
\begin{gather*}
x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=6 \\
x_{1}=f_{1}\left(a_{1}, \ldots . a_{n}\right) \ldots
\end{gather*}
$$

Every rational function of $x_{1} \ldots x_{n}$ which is symetric is a formula in

$$
a_{1} \ldots a_{n}
$$

Example

$$
\begin{array}{r}
V=\left(\frac{x_{1}-x_{2}}{2}, \frac{x_{2}-x_{1}}{2}\right) \\
V_{\text {sq }}=\left(\left(\frac{x_{1}-x_{2}}{2}\right)^{2}, 0\right)
\end{array}
$$

is symmetric

So $x_{1,2}=\frac{x_{1}+x_{2}}{2} \pm \sqrt{\left(\frac{x_{1}-x_{2}}{2}\right)^{2}}$

$$
\begin{gathered}
x^{5}+a_{1} x^{4}+\ldots+a_{5}=0 \\
x_{i} 1 \longrightarrow x_{i}-\frac{\sum x_{i}}{5}=y_{i} \\
y^{5}+0 y^{4}+\cdots=0
\end{gathered}
$$

cannot be solved in radicals.

Try to reach $\sum z_{i} z_{j}=0$

$$
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{5}
\end{array}\right) \sim\left(\begin{array}{c}
y_{1}^{2}-\sum y_{i}^{2} / 5 \\
\vdots \\
y_{5}^{2}-\sum y_{i}^{2} / 5
\end{array}\right)
$$

\longrightarrow at the cost of a squat root, get to the eq'n

$$
z^{5}+0 z^{4}+0 z^{3}+\ldots \cdot=0
$$

Now rescale the Z's to get a quadratic surface in projective space.

