Q: Can V of Z^u be chosen to have 120°-degree rotational symmetry?

This may follow from an appropriate AET argument, starting from a fully-symmetric Z^u for KTGs.

$V = 2c_2$, is $J = 0$.

Yes, by fitting it in a tetrahedron?

This would only imply that dV is in S^3.

[and anyway, no C^* renormalization will affect Y-symmetry].

My understanding of AET is still fragile.

\[V \rightarrow \Phi^{1\text{-loop}} \text{ after [AT].} \]

Basic: \[\alpha \] Better: \[\alpha_e \]

\[\Phi \rightarrow V \text{ after [AET].} \]

In \mathcal{K}^{sw} allow tubes and strands and tube-strand vertices, allow “punctures”, yet allow no “tangles”.

\[U(g) \cong U(g_+) \otimes M_- \]

The generators of \mathcal{K}^{sw} can be written in terms of the generators of \mathcal{K}^u (i.e., given Φ, can write a formula for V). With T any classical tangle, esp. \(\bigcirc \) or \(\bigcirc \), consider the “sled” from Swiss knots -1105.

Q: Does this mean anything in Drinfeld double (and?)