Double Tree Computations

November 25 - 2011

\(C_1 \) abstains by the overhead trick
\(\Phi_{1,2} \) abstains by the two rule rule
\(\Phi_{1,2} \) abstains by the overhead trick applied downwards. \[\text{"The umbrella trick"} \]

\(R_1, R_3 \)

\(C_1 \) contributes \(\sqrt{2} \)

\(\Phi_4 \) abstains because red legs may be ignored.

\(\lambda_3 \)'s stem part can be moved across infinity to encounter red.

\(\lambda_3 \)'s leaves push up and contribute \((\sqrt{14})^2 \)

\(\lambda_4 \) abstains as it is all red.

\(R_1 \) contributes \(1 \times \pi \frac{1}{2} - \delta \)

So overall, \(\hat{S}(\wedge) = 2 \times e^\frac{1}{2} - \delta \).

An alternative.

Some automatic cancellations:

\(\text{Cancels} \)
and disjoint unions:

\(\emptyset \) abstains by \(S_3 \) non-degeneracy.

\(\emptyset_{13} \) abstains by the two reds rule.

\(\emptyset_{1} \) abstains by the under-belly trick.

\(\emptyset_{2} \) abstains because the \(V^{1/4} \) on its legs can each be pushed to some red zone.

\(\emptyset_{3} \) abstains because it is in a red zone.

\(R_{1} \) abstains by head-inversion of the left double tree.

... so \(\tilde{S} \) maps disjoint unions to disjoint unions.

There ought to be a nicer alternative?

\(\emptyset_{1} \) and contractions: [is this the most general case?]

compare: 1. 3 cuts, then puncture

and until

"contract, then \(\tilde{S} \)"

with 2. puncture and write

then cut \& tube.
Then cut & tube. "Then contract."

$\sqrt[2]{2}$ factor on the handle.

Process 1 outputs a single

Process 2:

- a_1 produces a yet-unknown quantity on handle.
- a_2 produces a_2^2, on handle.
- a_5 abounds by overhead
- a_6 abounds: push up, puncture, unzip, cut tube, push down, nothing stays.

D_7 abounds by underbelly.

y_8 abounds like r_1

Moral: I could not compute the handle contribution but it
seems the overall contribution is localised at the handle so it can be computed using $\nu = \nu_0$.

2011-11 Page 3