A Bit on Maxwell’s Equations

Prerequisites.

- Poincaré’s Lemma, which says that on \(\mathbb{R}^n \), every closed form is exact. That is, if \(d\omega = 0 \), then there exists \(\eta \) with \(d\eta = \omega \).
- Integration by parts:
 \[
 \int \omega \wedge d\eta = -(-1)^{\deg \omega} \frac{\partial}{\partial t} \int (d\omega) \wedge \eta
 \]
 on domains that have no boundary.
- The Hodge star operator \(\star \) which satisfies
 \[
 \omega \wedge \star \eta = \langle \omega, \eta \rangle dx_1 \cdots dx_n
 \]
 whenever \(\omega \) and \(\eta \) are of the same degree.
- The simplest least action principle: the extremes of
 \(q \mapsto \int_a^b \left(\frac{1}{2}m\dot{q}^2(t) - V(q(t)) \right) dt \)
 occur when \(m\ddot{q} = -V'(q(t)) \). That is, when \(F = ma \).

The Action Principle. The Vector Field is a compactly supported 1-form \(A \) on \(\mathbb{R}^4 \) which extremizes the action

\[
S_J(A) := \int_{\mathbb{R}^4} \frac{1}{2}||dA||^2 dt dx dy dz + J \wedge A
\]

where the 3-form \(J \) is the charge-current.

The Euler-Lagrange Equations in this case are \(d \star dA = J \), meaning that there’s no hope for a solution unless \(dJ = 0 \), and that we might as well (think Poincaré’s Lemma!) change variables to \(F := dA \). We thus get

\[
dJ = 0 \quad dF = 0 \quad d \star F = J
\]

These are the Maxwell equations! Indeed, writing \(F = (E_x dx dt + E_y dy dt + E_z dz dt) + (B_x dy dz + B_y dz dx + B_z dx dy) \) and \(J = \rho dx dy dz - j_x dy dz dt - j_y dz dx dt - j_z dx dy dt \), we find:

\[
\begin{align*}
dJ &= 0 \implies \frac{\partial \rho}{\partial t} + \text{div} j = 0 & \text{“conservation of charge”} \\
dF &= 0 \implies \text{div } B = 0 & \text{“no magnetic monopoles”} \\
& \quad \text{curl } E = -\frac{\partial B}{\partial t} & \text{that’s how generators work!} \\
d \star F &= J \implies \text{curl } E = -\rho & \text{“electrostatics”} \\
& \quad \text{curl } B = -\frac{\partial E}{\partial t} + j & \text{that’s how electromagnets work!}
\end{align*}
\]

Exercise. Use the Lorentz metric to fix the sign errors.

Exercise. Use pullbacks along Lorentz transformations to figure out how \(E \) and \(B \) (and \(j \) and \(\rho \)) appear to moving observers.

Exercise. With \(ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2 \) use \(S = mc \int_{c_1}^{c_2} (ds + eA) \) to derive Feynman’s “law of motion” and “force law”.

November 30, 2011; \url{http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2011-11#OtherFiles}