1. Representability & Specif Problems. Mostly 2. Asymptotic methods. 3. Generic Constructions (applications to division algebras & Braw group) Then G-graded analogs & these results, Garfield group. Wan associative algebra over F=F FGF(X) F(DC1x1)=0 for => F is an identity. Examples xy-yz & W is committed [[x1y]^2, Z] in Ma(F) Anitsur-Levitzky: San = Z=(-1) Xo1 Xo12n in Mn (F) A "PI-algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	Aljadeff: Polynomial Identities and Graded Algebras
3. Generic Constructions Capplications to Jivision algebras & Braw group) Then G-graded analogs of hese results, G a finite group. Wan associative algebra over F=F FEF(X) F(x,xn) = 0 for => F is an identify. Examples xy-yx & W is commutated [[x,y]², z] in Ma(F) Anitsur-Levitzky: San = Z=(-1) xnxoten in Mn (FT) A "PI-algebra" is an algebra hat has identities. Multilinearization": Can always replace identities by multilinear ones.	Deptember-21-11 10:41 AM
3. Generic Constructions Capplications to Jivision algebras & Braw group) Then G-graded analogs of hese results, G a finite group. Wan associative algebra over F=F FEF(X) F(x,xn) = 0 for => F is an identify. Examples xy-yx & W is commutated [[x,y]², z] in Ma(F) Anitsur-Levitzky: San = Z=(-1) xnxoten in Mn (FT) A "PI-algebra" is an algebra hat has identities. Multilinearization": Can always replace identities by multilinear ones.	1. Representability & Specht Problems. 1057/7
3. Generic Constructions Capplications to Jivision algebras & Braw group) Then G-graded analogs of hese results, G a finite group. Wan associative algebra over F=F FEF(X) F(x,xn) = 0 for => F is an identify. Examples xy-yx & W is commutated [[x,y]², z] in Ma(F) Anitsur-Levitzky: San = Z=(-1) xnxoten in Mn (FT) A "PI-algebra" is an algebra hat has identities. Multilinearization": Can always replace identities by multilinear ones.	2. Asymptotic methods.
Jivision objects & Braw group) Then G-graded analogs of these results, G a Finite group. Wan associative algebra over F=F FGF(X) F(x1x1)=0 for => F is an identity. Examples xy-yz & W is committed [[x,y]², z] in Ma(F) Amitsur-Levitzky: San = Z=(-1) xy xo(2n) in Mn (F) A "PI-algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	3. Garagia Constructions Capplications to
Wan associative algebra over $F = F$ $F \in F < X > Y$ $F(DC_1X_1) \equiv 0$ for $D \in I$ an identity. Examples $Xy - yz \in W$ is committed. $[[X,y]^2, Z]$ in $M_2(F)$ Anitsur-Levitzky: $S_{2n} = Z = (-1)^n X_{01} X_{012}$ in $M_n(F)$ A " PI -algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	division double st. Rome some
Wan associative algebra over $F = F$ $F \in F < X > Y$ $F(DC_1X_1) \equiv 0$ for $D \in I$ an identity. Examples $Xy - yz \in W$ is committed. $[[X,y]^2, Z]$ in $M_2(F)$ Anitsur-Levitzky: $S_{2n} = Z = (-1)^n X_{01} X_{012}$ in $M_n(F)$ A " PI -algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	1 (()) sap
Wan associative algebra over $F = F$ $F \in F < X > Y$ $F(DC_1X_1) \equiv 0$ for $D \in I$ an identity. Examples $Xy - yz \in W$ is committed. $[[X,y]^2, Z]$ in $M_2(F)$ Anitsur-Levitzky: $S_{2n} = Z = (-1)^n X_{01} X_{012}$ in $M_n(F)$ A " PI -algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	Then 6-graded almogs of 141st results,
Wan associative algebra over $F = F$ $F \in F < X > Y$ $F(DC_1X_1) \equiv 0$ for $D \in I$ an identity. Examples $Xy - yz \in W$ is committed. $[[X,y]^2, Z]$ in $M_2(F)$ Anitsur-Levitzky: $S_{2n} = Z = (-1)^n X_{01} X_{012}$ in $M_n(F)$ A " PI -algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	Ga Finite group.
FEF(X) F(DC1 X1) = 0 for =) F is an identity. Examples Xy-yx & W is commutately [[X,y]^2, Z] in Ma(F) Anitsur-Levitzky: San = Z= (-1) Xy1 Xo(21) in Mn (F) A "PI-algebia" is an algebia hat his identities. Multilinearization": Can always replice identities by multilinear ones.	
F(DC1 Xn) = 0 for => F is an identity. Examples Xy-yz => W is commutately [[X,y]^2, Z] in Ma(F) Anitsur-Levitzky: San = Z= (-1) Xo1 Xo(n) in Mn (F) A "PI-algebia" is an algebia hat his identities. 'Multilinearization': Can always replice identities by multilinear ones.	
Examples $xy-yz \in W$ is commutative $[[x,y]^2, Z] \text{ in } M_2(F)$ Anitsur-Levitzky: $S_{2n} = Z(-1)^n X_{r1} - X_{r1} \times X_{r1} \times X_{r2} \times X_{r1} \times X_{r2} $	
[[x,y] ² , z] in M ₂ (F) Anitsur-Levitzky: Son = Z (-1) xon - xon in M ₁ (F) A "PI-algebra" is an algebra hat his identities. "Multilinearization": Can always replied identities by multilinear ones.	$F(C_1X_1) \equiv 0$ for $\equiv F$ is an identity.
[[x,y] ² , z] in M ₂ (F) Anitsur-Levitzky: Son = Z (-1) xon - xon in M ₁ (F) A "PI-algebra" is an algebra hat his identities. "Multilinearization": Can always replied identities by multilinear ones.	Examples xy-you ED W/ is commutated
Amitsur-Levitzky: San = Z (-1) x y x y (2n) in M (F) A "PI-algebra" is an algebra hat has identities. Multilinearization": Can always replace identities by multilinear ones.	
San = Zefin Xon Xorm in Mn (FF) A "PI-algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	$[[x,y]^2, Z]$ in $M_2(F)$
San = Zefin Xon Xorm in Mn (FF) A "PI-algebra" is an algebra that has identities. Multilinearization": Can always replace identities by multilinear ones.	Amitsur-Levitzky:
in Mn (F) A "PI-algebra" is an algebra hat his identities. "Multilinearization": Can always replace identities by multilinear ones.	
in Mn (F) A "PI-algebra" is an algebra hat his identities. "Multilinearization": Can always replace identities by multilinear ones.	San - (-1) Lon - lo(20)
A "PI-algebra" is an algebra hat his identities. Multilinearization": Can always replace identities by multilinear ones.	
ms identities. "Multilinearization": Can always replace identities by multilinear ones.	$IN N_{n}(IT)$
ms identities. "Multilinearization": Can always replace identities by multilinear ones.	A PT-double in an about the
"Multilinearization": Can always replace identities by multilinear ones.	
identities by multiliner ones.	ms 120/7/es.
identities by multiliner ones.	Multilinearization: Can always replace
	- JONTIIUS BY MUTINIUM ONES.
Cappeli: Cn = 5 (-1) y x, y, x, y	Cappeli: Cn = Z (-1) y xo, y xoz xoz xonyn

TES ₁
is on identity For any algebra
of Jim < n
Yet the infinite yourseman algebra
Stissius [[x,y],Z]
Les Joseph Joseph
but no Cappell identity.
OBN: Is this related to "internal quotients"?