Given a fixed linking matrix A, let \mathcal{D}^n be the strandless part of \mathcal{D}. It is graded by the total degree m and by the leg-count $2l$:

$$\mathcal{D}^n = \bigoplus_{m,l} \mathcal{D}^n_{m,l}.$$

(E.g., $\begin{array}{c} \hline \hline \hline \hline \hline \hline \end{array}$ has $m = 5$, $2l = 4$, $l = 2$)

Then $\hat{A}^\mathcal{D} : \mathcal{D}^n_{m,l} \to K(\mathcal{D})_{m-1}$.

Question. Is there a global meaning to the grading of \mathcal{D}^n by $(m-l)^2$?

Question. Is there a local Goussev-style "bracelet theory"?