"A representation on $s\left(g_{f}\right)$ "

$$
\begin{aligned}
& \text { M_: } \rightarrow M_{1} \rightarrow \underset{\overrightarrow{7}}{\frac{7}{7}}+\underset{\overrightarrow{7}}{\overrightarrow{7}}+\underset{\rightarrow}{\overrightarrow{7}} \underset{\rightarrow}{\overrightarrow{7}}
\end{aligned}
$$

The θ Theorem: For every dimodule x,

$$
\theta: \operatorname{Hom}_{M}\left(M-\otimes X_{0} \rightarrow M_{+}^{*} \otimes X\right) \rightarrow \operatorname{Hom}_{v}\left(X_{0}, X\right)
$$

is an isomorphism, where What's $X 2$? If it
 doesn't matte, it can be made universal.
"Principle". Every "for "vary object" theorem in

and

What's Homv? $?_{0} \rightarrow \mathrm{f} \rightarrow$ W/ no conditions

