Braverman Lecture 2
July-15-11
12:56 PM
Vector bundles, sections, pullback bundles, hom of two bundles, elliptic operators by their symbols
theorm:

1. If D is inliftic than it is Fnotholm.
2. indG ((2) dernods only on the homotory class of the linding symbol of D

Theorcm.

$$
t-\operatorname{in} d_{G}\left(\sigma_{L}(D)\right)=\operatorname{ind}_{G}(D)
$$

Duf. of $K(X)$: formal differonces of vector bundles. Likewise $K_{G}(x)$

$$
\begin{aligned}
& K(\cdot)=\mathbb{Z} \quad K_{G}(0)=K(G) \\
& K\left(s^{\prime}\right)=\mathbb{Z} \\
& K\left(S^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}
\end{aligned}
$$

If X is non-compact, let \bar{x} be if's 1-pt compactification \& set $\quad(w / 1-\rho t=\infty)$

$$
k(x):=k(\bar{x}) / k(\infty)
$$

Morphisms in the non-compact case:

$$
E \xrightarrow{\sigma} F \text { s.t. } \sigma \text { is invertible outyide }
$$ of a compact set.

Thas $\sigma_{L}(D)$ is an element of $K_{G}\left(T^{*} M\right)$. t-ind: $K\left(T^{*} M\right) \rightarrow \mathbb{Z}$ dofined by:
$M \subset \mathbb{N}^{n}$ by whithey s_{0}
Givan
$T^{*} M \subset \mathbb{R}^{n} \not \mathbb{R}^{n}=\mathbb{C}^{n} . \left\lvert\, \begin{array}{ll}f: M \rightarrow N\end{array}\right.$

$$
\begin{array}{l|l|l}
T^{*} M \subset \mathbb{R}^{n} \not \mathbb{R}^{n}=\mathbb{C}^{n} & f: M \rightarrow N \\
\text { have } \\
F^{*}: K(N) \rightarrow K(M)
\end{array}
$$

can construct $K\left(T^{*} M\right) \xrightarrow{J_{t}} K\left(\mathbb{C}^{n}\right) \cong K(0)=\mathbb{Z}$
Bott Periodicity
Everything generdites to the equivariant situation.

The proof of $A-5$ works dy listing proputios of both sides and showing tat There is a unique object having these properties. Without a G there are not enough properties to do that.

