$$
x^{n} y^{m}=\sum_{k=0}^{m}\binom{m}{k} n^{k} y^{m-k} x^{n}
$$

verified in U(20).nb
Better with $[x, y]=\hbar x$. Then

$$
x^{n} y^{m}=\sum_{k=0}^{m}\binom{m}{k}(\hbar n)^{k} y^{m-k} x^{n}
$$

So

$$
e^{x} l^{y}=e^{y} e^{e^{\hbar} x} \text { "The spirits of the dead". }
$$

$\frac{\partial}{\partial k}: \quad 0=e^{y} e^{k} x e^{e^{k} x} \quad X$ In tho presence of $[x, y]=\hbar x$
$\partial k \quad x$ differentiation writ. th makes no sense.

$$
\begin{aligned}
& E: \quad e^{x}(x+y) e^{y}=e^{y}\left(y+\hbar l^{k} x+e^{5} x\right) l^{x} \quad E l^{a}=(E a) l^{a} \\
& l^{-y} x l^{y}=e^{-y} \sum_{m=0}^{\infty} \frac{1}{m} \sum_{k=0}^{n}\binom{m}{k} \hbar^{k} y^{m-k-k} x= \\
& =e^{-y} \sum_{p=0}^{\infty} \sum_{k} \frac{1}{(n+k)!}\binom{p+k}{k} \hbar^{k} y^{\rho} x=e^{-y} \sum_{p_{1} k} \frac{1}{k!p!} \hbar^{k} y^{\rho} x \\
& =e^{\hbar} x
\end{aligned}
$$

$$
\Rightarrow \forall f(x), \quad e^{-y} f(x) e^{y}=f\left(e^{\hbar} x\right)
$$

$$
\begin{aligned}
& e^{x} y=\sum \frac{1}{n} \frac{1}{n}, x^{n} y^{n}=\sum_{n, m} \sum_{k=0}^{m} \frac{(R) n^{k}}{n!m!} y^{n^{m} n^{m}} x^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n, r} \frac{e^{n}}{n} n_{1} y^{p} x^{n}=e^{y} e^{a x}
\end{aligned}
$$

