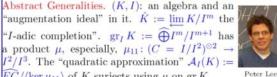
Facts and Dreams About v-Knots and Etingof-Kazhdan, 1

Dror Bar-Natan at Swiss Knots 2011

http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

 $(K/I^{m+1})^* = (\text{invariants of type } m) =: \mathcal{V}_m$

 $(I^m/I^{m+1})^* = V_m/V_{m-1}$ $C = \langle t^{ij}|t^{ij} = t^{ji}\rangle = \langle | - - - \rangle$


 $\ker \mu_{11} = \langle [t^{ij}, t^{kl}] = 0 = [t^{ij}, t^{ik} + t^{jk}] \rangle = \langle 4\text{T relations} \rangle$

 $A = \begin{pmatrix} \text{horizontal chord dia-} \\ \text{grams mod } 4T \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 4T \\ 1 \\ 1 \end{pmatrix}$

universal finite type invariant, the Kontsevich integral.

Abstract. I will describe, to the best of my understanding, the Example 1. relationship between virtual knots and the Etingof-Kazhdan quantization of Lie bialgebras, and explain why, IMHO, both topologists and algebraists should care. I am not happy yet about the state of my understanding of the subject but I

haven't lost hope of achieving happiness, one day. Abstract Generalities. (K, I): an algebra and an

 $\widehat{FC}/\langle \ker \mu_{11} \rangle$ of K surjects using μ on $\operatorname{gr} K$. The Prized Object. A "homomorphic A-expansion": a homomorphic filterred $Z \colon K \to A$ inducing the identity on $I/I^2 = C$.

Dror's Dream. All interesting graded objects and equation

especially those around quantum groups arise this way

Why Prized? Sizes K and shows it "as big" as A; reduces 'topological" questions to quadratic algebra questions; gives ife and meaning to questions in graded algebra; universalizes

K

still

 ψ_4

hose more than "universal enveloping algebras" and allows For $K = \mathbb{Q}PvB_n$, [Le that homomorphic Z exists. We don't kee or richer quotients.

 K_2

General Algebraic Structures¹

- Has kinds, object operations, and maybe constants.
- · Must have "the free structure over some generators". works!
- · We always allow formal linear combinations.

Example 3. Quandle: a set K with an op \wedge s.t.

$$\begin{array}{ll} 1 \wedge x = 1, & x \wedge 1 = x = x \wedge x, \\ (x \wedge y) \wedge z = (x \wedge z) \wedge (y \wedge z). & (\text{main}) \end{array}$$

A(K) is a graded Lie algebra: Roughly, set $\bar{v} := (v-1)$ (these generate I!), feed $1 + \bar{x}$, $1 + \bar{y}$, $1 + \bar{z}$ in (main), collect the surviving terms of lowest degree:

$$(\bar{x} \wedge \bar{y}) \wedge \bar{z} = (\bar{x} \wedge \bar{z}) \wedge \bar{y} + \bar{x} \wedge (\bar{y} \wedge \bar{z}).$$

element.

acts and Dreams About v-Knots and Etingof-Kazhdan, 2	
	То Do.
	 Example: parenthesized braids and horizontal associators.
	 Example: KTGs and non-horizontal associators ("bracket rise" arises here).
	 Example: wKO's and the Kashiwara-Vergne equations.
	 vKO's, bi-algebras, E-K, what would it mean to fin an expansion, why I care (stronger invariant, more interesting quotients).
	\bullet wKO's, uKO's, and Alekseev-Enriquez-Torrosian.
	"God created the knots, all else in topology is the work of mortals."
tnotes and references are on the PDF version, page 3.	Leopold Kronecker (modified) www.katlas.org

Footnotes
 I probably mean "a functor from some fixed "structure multi-category" to the multi-category of sets, extended to formal linear combinations".
References
[Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation.