We shall need a Hopf algebra version of the above definition. In this case \(A_0 \) is a Poisson-Hopf algebra (i.e., a Hopf algebra structure and a Poisson algebra structure on \(A_0 \) are given such that the multiplication is the same for both structures and the comultiplication \(A_0 \to A_0 \otimes A_0 \) is a Poisson algebra homomorphism, the Poisson bracket on \(A_0 \otimes A_0 \) being defined by \(\langle a \otimes b, c \otimes d \rangle = ac \otimes \{ b, d \} + \{ a, c \} \otimes bd \) and \(A \) is a Hopf algebra deformation of \(A_0 \). We shall also use the dual notion of quantization of co-Poisson-Hopf algebras (a co-Poisson-Hopf algebra is a cocommutative Hopf algebra \(B \) with a Poisson cobracket \(B \to B \otimes B \) compatible with the Hopf algebra structure).

We discuss the structure of Poisson-Hopf algebras and co-Poisson-Hopf algebras in §§3 and 4. Then we consider the quantization problem.

3. Poisson groups and Lie bialgebras. A Poisson group is a group \(G \) with a Poisson bracket on \(\text{Fun}(G) \) which makes \(\text{Fun}(G) \) a Poisson-Hopf algebra. In other words the Poisson bracket must be compatible with the group operation, which means that the mapping \(\mu : G \times G \to G \), \(\mu(g_1, g_2) = g_1 g_2 \), must be a Poisson mapping in the sense of [33], i.e., \(\mu^* : \text{Fun}(G) \to \text{Fun}(G \times G) \) must be a Lie algebra homomorphism. Specifying the meaning of the word “group” and the symbol \(\text{Fun}(G) \), we obtain the notions of Poisson-Lie group, Poisson formal group, Poisson algebraic group, etc. According to our general principles the notions of Poisson group and Poisson-Hopf algebra are equivalent.

There exists a very simple description of Poisson-Lie groups in terms of Lie bialgebras.

Definition. A Lie bialgebra is a vector space \(g \) with a Lie algebra structure and a Lie coalgebra structure, these structures being compatible in the following sense: the cocommutator mapping \(g \to g \otimes g \) must be a 1-cocycle (\(g \) acts on \(g \otimes g \) by means of the adjoint representation).

If \(G \) is a Poisson-Lie group then \(g = \text{Lie}(G) \) has a Lie bialgebra structure. To define it write the Poisson bracket on \(C^\infty(G) \) as

\[
\{ \varphi, \psi \} = \eta^{\mu \nu} \partial_\mu \varphi \cdot \partial_\nu \psi, \quad \varphi, \psi \in C^\infty(G),
\]

where \(\{ \partial_\mu \} \) is a basis of right-invariant vector fields on \(G \). The compatibility of the bracket with the group operation means that the function \(\eta : G \to g \otimes g \) corresponding to \(\eta^{\mu \nu} \) is a 1-cocycle. The 1-cocycle \(f : g \to g \otimes g \) corresponding to \(\eta \) defines a Lie bialgebra structure on \(g \) (the Jacobi identity for \(f^* : g^* \otimes g^* \to g^* \) holds because \(f^* \) is the infinitesimal part of the bracket (4)).

Theorem 1. The category of connected and simply-connected Poisson-Lie groups is equivalent to the category of finite dimensional Lie bialgebras.

The analogue of Theorem 1 for Poisson formal groups over a field of characteristic 0 can be proved in the following way. The algebra of functions on the formal group corresponding to \(g \) is nothing but \((Ug)^* \). A Poisson-Hopf structure on \((Ug)^* \) is equivalent to a co-Poisson-Hopf structure on \(Ug \). So it suffices to prove the following easy theorem.

Theorem 2. Let \(\delta : Ug \to Ug \otimes Ug \) be a Poisson cobracket which makes \(Ug \) a co-Poisson-Hopf algebra (the Hopf structure on \(Ug \) is usual). Then \(\delta(g) \subset g \otimes g \) and \(g, \delta(g) \) is a Lie bialgebra. Thus we obtain a one-to-one correspondence between co-Poisson-Hopf structures on \(Ug \) inducing the usual Hopf structure and Lie bialgebra structures on \(g \) inducing the given Lie algebra structure.

Question. Is there a diagrammatic version of that?