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Abstract. It had been known since old times ([MO], [Da]) that there exists a universal
finite type invariant (“an expansion”) Zold for Knotted Trivalent Graphs (KTGs), and that
it can be chosen to intertwine between some of the standard operations on KTGs and their
chord-diagrammatic counterparts (so that relative to those operations, it is “homomorphic”).
Yet perhaps the most important operation on KTGs is the “edge unzip” operation, and while
the behaviour of Zold under edge unzip is well understood, it is not plainly homomorphic
as some “correction factors” appear.

In this paper we present two (equivalent) ways of modifying Zold into a new expansion
Z, defined on “dotted Knotted Trivalent Graphs” (dKTGs), which is homomorphic with
respect to a large set of operations. The first is to replace “edge unzips” by “tree connect
sums”, and the second involves somewhat restricting the circumstances under which edge
unzips are allowed. As we shall explain, the newly defined class dKTG of knotted trivalent
graphs retains all the good qualities that KTGs have — it remains firmly connected with
the Drinfel’d theory of associators and it is sufficiently rich to serve as a foundation for an
“Algebraic Knot Theory”. As an application, we present a simple proof of the good behavior
of the LMO invariant under the Kirby II (band-slide) move [LMMO].
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1. Introduction

Knot theory is not usually considered an algebraic subject, and one reason for this is that
knots are not equipped with a rich enough algebraic structure. There are some operations
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defined on knots, most importantly connected sum and cabling, but even with these present,
the space of knots is far from finitely generated, not to mention finitely presented.

There is a way, however, to put knot theory in an algebraic context, by considering the
larger, richer space of Knotted Trivalent Graphs. KTGs include knots and links, and are
equipped with four standard operations, called the orientation switch, edge delete, edge
unzip, and connected sum. With these operations, KTGs form a finitely presented algebraic
structure [Th]. Furthermore, several topological knot properties, including knot genus and
the ribbon property are defineable by simple formulas in the space of KTGs [BN2]. Thus,
invariants which are well-behaved with respect to the algebraic structure on KTGs could be
used as algebraic tools to understand these knot properties.

A construction of an almost-perfect such invariant has long been known ([MO], and later
[Da]): the Kontsevich integral of knots can be extended to a universal finite type invariant
(or “expansion”) Zold of KTGs, and the extension is very well-behaved with respect to three
of the four KTG operation. By “very well-behaved”, we mean that it intertwines those
operations and their chord-diagrammatic counterparts, in other words, it is “homomorphic”
with respect to those operations. However, Zold fails to commute with the unzip operation,
which plays a crucial role in the finite generation of KTGs. Although the behaviour of Zold

with respect to unzip is well-understood, it is not homomorphic, and it can be shown (we
do so in the appendix to this paper) that any expansion of KTGs will display an anomaly
like the above: it can not commute with all four operations at the same time.

The main goal of this paper is to fix the anomaly by proposing a different definition of
KTGs, which we will call “dotted knotted trivalent graphs”, or dKTGs on which a truly
homomorphic expansion exists. We present two (equivalent) constructions of this space. In
one we replace the unzip, delete and connected sum operations by a more general set of
operations called “tree connected sums”. In the other, we restrict the set of edges which we
allow to be unzipped. We show that Zold can easily be modified to produce a homomorphic
expansion of dKTGs, and that dKTGs retain all the good qualities of KTGs, namely, finite
generation and a close connection to Drinfel’d associators.

Finally, we show a simple (free of associators and local considerations) proof of the theorem
that the LMO invariant is well behaved with respect to the Kirby II (band-slide) move.

2. Preliminaries

The goal of this section is to introduce the theory of finite type invariants by putting
it in the general algebraic context of expansions. We first define general “algebraic struc-
tures”, “projectivizations” and “expansions”, followed by a short introduction to finite type
invariants of knotted trivalent graphs (and the special case of knots and links) as an example.

2.1. Algebraic structures and expansions. An algebraic structure O is some collection
(Oα) of sets of objects of different kinds, where the subscript α denotes the kind of the
objects in Oα, along with some collection of operations ψβ, where each ψβ is an arbitrary
map with domain some product Oα1 × · · · × Oαk

of sets of objects, and range a single set
Oα0 (so operations may be unary or binary or multinary, but they always return a value of
some fixed kind). We also allow some named constants within some Oα’s (or equivalently,
allow some 0-nary operations). The operations may or may not be subject to “axioms” —
an axiom is an identity asserting that some composition of operations is equal to some other
composition of operations.
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Any algebraic structure O has a projectivization. First extend O to allow formal linear
combinations of objects of the same kind (extending the operations in a linear or multi-
linear manner), then let I, the augmentation ideal, be the sub-structure made out of all
such combinations in which the sum of coefficients is 0. Let Im be the set of all outputs of
algebraic expressions (that is, arbitrary compositions of the operations in O) that have at
least m inputs in I (and possibly, further inputs in O), and finally, set

projO :=
⊕
m≥0

Im/Im+1.

Clearly, with the operation inherited from O, the projectivization projO is again algebraic
structure with the same multi-graph of spaces and operations, but with new objects and
with new operations that may or may not satisfy the axioms satisfied by the operations of
O. The main new feature in proj O is that it is a “graded” structure; we denote the degree
m piece Im/Im+1 of proj O by projmO.

Given an algebraic structure O let fil O denote the filtered structure of linear combinations
of objects in O (respecting kinds), filtered by the powers (Im) of the augmentation ideal I.
Recall also that any graded space G =

⊕
mGm is automatically filtered, by

(⊕
n≥mGn

)∞
m=0

.
An “expansion” Z for O is a map Z : O → proj O that preserves the kinds of objects and

whose linear extention (also called Z) to fil O respects the filtration of both sides, and for
which (gr Z) : (gr fil O = proj O) → (gr proj O = proj O) is the identity map of proj O.

In practical terms, this is equivalent to saying that Z is a map O → proj O whose
restriction to Im vanishes in degrees less than m (in proj O) and whose degree m piece is
the projection Im → Im/Im+1.

A “homomorphic expansion” is an expansion which also commutes with all the algebraic
operations defined on the algebraic structure O.

2.2. KTGs and Zold. A trivalent graph is a graph which has three edges meeting at each
vertex. We require that all edges be oriented and that vertices be equipped with a cyclic
orientation, i.e. a cyclic ordering of the three edges meeting at the vertex. We allow multiple
edges; loops (i.e., edges that begin and end at the same vertex); and circles (i.e. edges
without a vertex).

2

3

2

3

1 1

Given a trivalent graph Γ, its thickening is obtained from
it by “thickening verices” as shown on the right, and gluing
the resulting “thick Y’s” in an orientaion preserving manner.
Hence, the thickening is a two-dimensional surface with bound-
ary. For it to be well-defined, we need the cyclic orientation at
the vertices.

A Knotted Trivalent Graph (KTG) is an isotopy class of embeddings of a
thickened trivalent graph in R3, as shown. This is equivalent to saying
that the edges of the graph are framed and the framings agree at vertices. In
particular, framed knots and links are knotted trivalent graphs. The skeleton
of a KTG γ is the combinatorial object (trivalent graph Γ) behind it.

Isotopy classes of KTG’s are in one to one correspondence with graph diagrams (projec-
tions onto a plane with only transverse double points preserving the over- and under-strand
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information at the crossings), modulo the Reidemeister moves R2, R3 and R4 (see for exam-
ple [MO]). R1 is omitted because we’re working with framed graphs. We always understand
the framing corresponding to a graph diagram to be the blackboard framing. R2 and R3 are
the same as in the knot case. R4 involves moving a strand in front of or behind a vertex:

R4b :R4a :

As an algebraic structure, KTGs have a different kind of objects for each skeleton. The
sets of objects are the sets of knottings K(Γ) for each skeleton graph Γ. There are four kinds
of operations defined on KTG’s:

Given a trivalent graph Γ, or a knotting γ ∈ K(Γ), and an edge e of Γ, we can switch the
orientation of e. We denote the resulting graph by Se(γ). In other words, we have defined
unary operations Se : K(Γ) → K(Se(Γ)).

We can also delete the edge e, which means the two vertices at the ends of e also cease to
exist to preserve the trivalence. To do this, it is required that the orientations of the two edges
connecting to e at either end match. This operation is denoted by de : K(Γ) → K(de(Γ)).

Unzipping the edge e (denoted by ue : K(Γ) → K(ue(Γ)), see figure below) means replacing
it by two edges that are “very close to each other”. The two vertices at the ends of e will
disappear. This can be imagined as cutting the band of e in half lengthwise. In the case of a
trivalent graph Γ, we consider its thickening and similarly cut the edge e in half lengthwise.
Again, the orientations have to match, i.e. the edges at the vertex where e begins have to
both be incoming, while the edges at the vertex where e ends must both be outgoing.

γ ue(γ)
e

Given two graphs with selected edges (Γ, e) and (Γ′, f), the connected sum of these graphs
along the two chosen edges, denoted Γ#e,fΓ

′, is obtained by joining e and f by a new edge.
For this to be well-defined, we also need to specify the direction of the new edge, the cyclic
orientations at each new vertex, and in the case of KTGs, the framing on the new edge. To
compress notation, let us declare that the new edge be oriented from Γ towards Γ′, have no
twists, and, using the blackboard framing, be attached to the right side of e and f , as shown:

e f

Γ′
Γ

Γ#e,fΓ
′

e f

As an algebraic structure, KTG is finitely generated1 (see
[Th]), by two elements, the trivially embedded tetrahedron and
the twisted tetrahedron, shown on the right (note that these
only differ in framing).

1In the appropriate sense it is also finitely presented, however we do not pursue this point here.
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As described in the general context, we allow formal Q-linear combinations of KTGs and
extend the operations linearly. The augmentation ideal I is generated by differences of
knotted trivalent graphs of the same skeleton. KTG is then filtered by powers of I, and
the projectivization A := projKTG also has a different kind of object for each skeleton Γ,
denoted A(Γ).

The classical way to filter the space of KTGs, which leads to the theory of finite type
invariants, is by resolutions of singularities. An n-singular KTG is a trivalent graph immersed
in R3 with n transverse double points. A resolution of such a singular KTG is obtained by
replacing each double point by the difference of an over-crossing and an under-crossing, which
produces a linear combination of 2k KTGs. Resolutions of n-singular KTGs generate the
n-th piece of the filtration.

Theorem 2.1. The filtration by powers of the augmentation ideal I coincides with the clas-
sical finite type filtration.

We defer the proof of this theorem to the appendix.

As in the classical theory of finite type invariants, A(Γ) is best understood
in terms of chord diagrams. A chord diagram of order n on a skeleton graph Γ
is a combinatorial object consisting of a pairing of 2n points on the edges of Γ,
up to orientation preserving homeomorphisms of the edges. Such a structure
is illustrated by drawing n “chords” between the paired points, as seen in the
figure on the right. From the finite type point of view, a chord represents the difference of
an overcrossing and an undercrossing (i.e. a double point).

Chord diagrams are factored out by two classes of relations, the Four Term relations (4T ):

− + − = 0,

and the Vertex Invariance relations (V I), (a.k.a. branching relation in [MO]):

+ (−1)→ + (−1)→(−1)→ = 0.

In both pictures, there may be other chords in the parts of the graph not shown, but they
have to be the same throughout. In V I, the sign (−1)→ is −1 if the edge the chord is ending
on is oriented to be outgoing from the vertex, and +1 if it is incoming.

Both relations arise from similar local isotopies of KTGs:

,= = = =

Although it is easy to see that these relations are present, showing that there are no more
is difficult, and is best achieved by constructing an expansion (in finite type language, a
universal finite type invariant) QKTG → A. This was first done in [MO] by extending
the Kontsevich integral Z of knots ([Ko], [CD], [BN1]), building on results by T. Le, H.
Murakami, J. Murakami and T. Ohtsuki and using Drinfel’d’s theory of associators. In [Da],
the same extension is constructed building on Kontsevich’s original definition. In this paper,
we will denote this expansion by Zold.
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The finite type theory of knots and links is included in the above as a special case. On
knots, there is no rich enough algebraic structure for the finite type filtration to coincide with
powers of the augmentation ideal with respect to some operations. However, knots and links
form a subset of KTGs, and the restriction of In to that subset reproduces the usual theory
of finite type invariants of knots and links, and Zold restricts to the Kontsevich integral.

Now we turn to the question of whether Zold is homomorphic with respect to the algebraic
structure of KTG. To study this we first have to know the operations induced on A by Se,
de, ue and #e,f .

Given a graph Γ and an edge e, the induced orientation switch operation is a linear map
Se : A(Γ) → A(se(Γ)) which multiplies a chord diagram D by (−1)k where k is the number
of chords in D ending on e. Note that this generalizes the antipode map on Jacobi diagrams,
which corresponds to the orientation reversal of knots (see [Oh], p.136).

The induced edge delete is a linear map de : A(Γ) → A(de(Γ)), defined as follows: when
the edge e is deleted, all diagrams with a chord ending on e are mapped to zero, while those
with no chords ending on e are left unchanged, except the edge e is removed. Edge delete is
the generalization of the co-unit map of [Oh] (p.136), and [BN1].

The induced unzip is a linear map ue : A(Γ) → A(ue(Γ)). When e is unzipped, each chord
that ends on it is replaced by a sum of two chords, one ending on each new edge (i.e., if k
chords end on e, then ue sends this chord diagram to a sum of 2k chord diagrams).

There is an operation on A(O) corresponding to the cabling of knots: references include
[BN1] (splitting map) and [Oh] (co-multiplication). The graph unzip operation is the graph
analogy of cabling, so the corresponding map is analogous as well.

For graphs Γ and Γ′, with edges e and e′, the induced connected sum #e,e′ : A(Γ)×A(Γ′) →
A(Γ#e,e′Γ

′) acts in the obvious way, by performing the connected sum operation on the
skeletons and not changing the chords in any way. This is well defined due to the 4T and V I
relations. (What needs to be proven is that we can move a chord ending over the attaching
point of the new edge; this is done in the same spirit as the proof of Lemma 3.1 in [BN1],
using “hooks”; see also [MO], figure 4.)

u(ν1/2)

ν−1/2 ν−1/2

Zold(γ) Zold(u(γ))

As it turns out (see [MO], [Da]), Zold is almost homomorphic:
it intertwines the orientation switch, edge delete, and connected
sum operations. However, Zold does not commute with edge
unzip. The behavior with respect to unzip is well-understood
(showed in [Da] using a result of [MO]), and is described by
the formula shown in the figure on the right. Here, ν denotes
the Kontsevich integral of the unkonot. A formula for ν was
conjectured in [BGRT1] and proven in [BLT]. The new chord
combinations appearing on the right commute with all the old
chord endings by 4T. A different way to phrase this formula is
that Zold intertwines the unzip operation ue : K(Γ) → K(ue(Γ)) with a “renormalized” chord
diagram operation ũe : A(Γ) → A(ue(Γ)), ũe = i2

ν−1/2 ◦ ue ◦ iν1/2 , where iν1/2 denotes the

operation of placing a factor of ν1/2 on e, ue is the chord-diagram unzip operation induced
by the topological unzip, and i2

ν−1/2 places factors of ν−1/2 on each “daughter edge”. So we

have Zold(ue(Γ)) = ũeZ
old(Γ).
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This is an anomaly: if Zold was honestly homomorphic, there should be no new chords
appearing, i.e., Z should intertwine unzip and its induced chord diagram operation. Our
main goal in this paper is to fix this.

3. The homomorphic expansion

Before we re-define KTG, let us note that doing so is really necessary:

Theorem 3.1. There is no homomorphic expansion QKTG→ A, i.e. an expansion cannot
intertwine all four operations at once.

To keep an optimistic outlook in this paper, we defer the proof of this theorem to the
appendix.

3.1. The space of dotted KTGs. We define the algebraic structure dKTG of dotted
Knotted Trivalent Graphs as follows:

A dotted trivalent graph is a graph which may have trivalent vertices, and two kinds of
bivalent vertices (called dots, and anti-dots, denoted by crosses). Trivalent vertices are
equipped with cyclical orientations and edges are oriented, as before. Like before, a dKTG
Γ has a well-defined thickening .

The algebraic structure dKTG has a different kind of objects for each dotted trivalent
graph skeleton. The objects K(Γ) corresponding to skeleton Γ are embeddings of into R3,
modulo ambient isotopy, or equivalently, framed embeddings of Γ where the framing agrees
with the cyclical orientations at trivalent verices.

Obviously, dKTGs are also represented by dKTG diagrams, with added Reidemeister
moves to allow the moving of bivalent vertices and anti-vertices over or under an edge.

We define three kinds of operations on dKTG.
Orientation reversal reverses the orientation of an edge, as before.
Given two dKTGs γ1 and γ2 of skeletons Γ1 and Γ2, and with identical distinguished trees

T1 and T2, the tree connected sum #T1,T2 : K(Γ1) × K(Γ2) → Γ1#T1,T2Γ2 is obtained by
deleting the two trees, and joining corresponding ends by bivalent vertices, as shown. The
orientations of the new edges are inherited from the leaves of the trees. We leave it to the
reader to check that this operation is well-defined.

γ2

#T1,T2

γ1

We allow the distinguished trees to have dots and anti-dots on them, with the restriction
that for each dot (resp. anti-dot) on T1, T2 is required to have an anti-dot (resp. dot) in the
same position.

The cancel operation cd,a : K(Γ) → K(cv,aΓ) is defined when a dKTG has a dot d and an
adjacent anti-dot a, in which case cancel deletes both (as in the figure below). This requires
the orientations of the three fused edges to agree.

d a

cd,a
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Lemma 3.2. dKTGs with the above operations form a finitely generated algebraic structure.

Proof. We will show that orientation switch, unzip, delete and “edge connected sum” (a
connected sum operation followed by unzipping the connecting edge) are compositions of
the new operations. In the proof that KTG is finitely generated (see [Th]), a connected sum
is always followed by an unzip, so edge connected sum is sufficient for finite generation. Fur-
thermore, we need to show that it is possible to add dots and anti-dots using tree connected
sum, which then also allows one to delete any dots or anti-dots using the cancel operation.

Orientation switch is an operation of dKTGs, so we have nothing to prove.
Unzip can be written as a tree connected sum the following way:

#T1,T2

T2
T1

e

γ

The graph on the right is almost ue(γ), except for the dots which result from the tree
connected sum. So to show that unzip can be written as a composition of the new operations,
it is enough to show that it is possible to “get rid of” dots. This is achieved by taking a tree
connected sum with a circle with three crosses and then cancelling:

T1 T2 c3#T1,T2

Edge delete and edge connected sum are done similarly, as illustrated by the figure below:

#T1,T2
#T1,T2

T2
T1

e

γ

,
T2T1

γ1 γ2

We have shown above that to add one anti-dot we need to take tree connected sum with
a circle with three anti-dots and a trivial tree (since the tree connected sum produces two
dots which then have to be cancelled). Similarly, to add one dot, we apply tree connected
sum with a circle which has one anti-dot on it.

Using that KTG is finitely generated by the two tetrahedrons, we have now shown that
dKTG is finitely generated by the following four elements:
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The reader might object that tree connected sum is infinitely many operations under one
name, so it is not fair to claim that the structure is finitely generated. However, only two of
these (the tree needed for unzip and delete, and the trivial tree used for edge connected sum
and vertex addition) are needed for finite generation. Later we will show a slightly different
construction in which we only use the operations that are essential, however, we felt that
tree connected sums are more natural and thus chose this version to be the starting point.

3.2. The associated graded space and homomorphic expansion. As before, the asso-
ciated graded space has a kind of objects for each skeleton dotted trivalent graph Γ, denoted
A(Γ), generated by chord diagrams on the skeleton Γ, and factored out by the usual 4T and
V I relations, the latter of which now applies to dots and anti-dots as well, shown here for
dots:

(−1)→ + (−1)→ = 0.

Orientation reversal acts the same way as it does for KTGs: if there are k chord endings
on the edge that is being reversed, the diagram gets multiplied by (−1)k.

The tree connected sum operation acts on AdKTG the following way: if any chords end on
the distinguished trees, we first use the VI relation to push them off the trees. Once the trees
are free of chord endings, we join the skeletons as above, creating bivalent vertices. Again,
this operation is well-defined.

The cancel operation deletes a bivalent vertex and an anti-vertex on the same edge, without
any change to chord endings.

Theorem 3.3. There exists a homomorphic expansion Z on the space of dKTGs, obtained
from the Zold of [MO] and [Da] by placing a ν1/2 near each dot and ν−1/2 near each anti-dot.

Proof. First, note that Z is well-defined: it does not matter which side of a dot (resp. anti-
dot) we place ν1/2 (resp. ν−1/2) on: if one edge is incoming, the other outgoing, then these
are equal by the V I relation, otherwise they are equal by the V I relation and the fact that
S(ν) = ν, where S denotes the orientation switch operation.

Since Zold is an expansion of KTGs, it follows that Z is an expansion. For homomorphicity,
we must show that Z commutes with the orientation switch, cancel and tree connected sum
operations.

Orientation switch and cancel are easy. If an edge ends in two trivalent vertices, then on
that edge Z coincides with Zold and hence commutes with switching the orientation. If one
or both ends of the edge are bivalent, then Z might differ from Zold by a factor of ν (or two),
but still commutes with S by the fact that S(ν) = ν. Z commutes with cancel because the
values of the dot and anti-dot are inverses of each other (and local, therefore commute with
all other chord endings and cancel each other out).
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In terms of the “old” KTG operations (disregarding the dots for a moment, and ignoring
edge orientation issues), a tree connected sum can be realised by one ordinary connected
sum followed by a series of unzips:

# u u

u u

γ1 γ2

T1 T2

We want to prove that Z(γ1#T1,T2γ2) = Z(γ1)#T1,T2Z(γ2). To compute the left side, we
trace Zold through the operations above. We assume that the trees have been cleared of
chord endings in the beginning using the V I relation (and of course chords that end outside
the trees remain unchanged throughout). Zold commutes with connected sum, so in the first
step, no chords appear on the trees. In the second step, we unzip the bridge connecting the
two graphs. As mentioned before, Zold intertwines unzip with ũ = i2

ν−1/2 ◦ u ◦ iν1/2 . It is
a simple fact of chord diagrams on KTGs that any chord diagram with a chord ending on
a bridge is 0, thus the first operation iν1/2 is the identity in this case. After the bridge is
unzipped, i2

ν−1/2 places ν−1/2 on the two resulting edges. The next time we apply ũ, iν1/2

cancels this out, the edge is unzipped, and then again ν−1/2 is placed on the daughter edges,
and so on, until there are no more edges to unzip. The operation iν1/2 will always cancel a
ν−1/2 from a previous step. Therefore, at the end, the result is one factor of ν−1/2 on each
of the connecting edges.

We get γ1#T1,T2γ2 by placing a dot on each of the connecting edges in the result of the
above sequence of operations. Z adds a factor of ν1/2 at each dot, which cancels out each
ν−1/2 that came from the unzips. Thus, Z(γ1#T1,T2γ2) has no chords on the connecting
edges, which is exactly what we needed to prove.

Let us note that edge orientations can indeed be ignored: for the unzips used above to be
legitimate, a number of orientation switch operations are needed, but since S(ν) = ν, the
action of these on any chord diagram that appears in the calculation above is trivial.

If the trees had dots and anti-dots to begin with, provided that for every dot (resp. anti-
dot) on T1, T2 had an anti-dot (resp. dot) in the same position, these will cancel each other
out, and we have already seen that Z commutes with the cancel operation.

�

3.3. An equivalent construction. Let the space dKTG’ have the same objects as dKTG,
but we define the operations differntly. We keep orientation reversal and cancel the same.
Instead of tree connected sums, we introduce the following three operations:

Edge delete is the same as in the space KTG, i.e., if orientations match, we can delete an
edge connecting two trivalent verices, and as a result, those vertices disappear.
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Dotted unzip allows unzips of an edge connecting two trivalent vertices with one dot on it
(technically, two edges), provided that orientations match at the trivalent vertices, as shown:

u̇e,f (γ)
feγ

Dotted edge connected sum is the same as edge connected sum, except dots appear where
edges are “fused” (and there are no conditions on edge orientations):

γ2γ1

e1 e2
#̇e1,e2

Alternatively, one can allow dotted connected sums (a connected sum where a dot appears
on the connecting edge). In this case, this construction is slightly stronger than the previous
one, as dotted connected sum cannot be written in terms of the operations of the first
construction. Dotted edge connected sum is the composition of a dotted connected sum
with a dotted unzip.

The associated graded space is as in the case of dKTG, and the induced operations on it
are the same for orientation reversal and cancel; are as in the case of KTGs for delete and
dotted unzip; and are as one would expect for dotted edge connected sum (no new chords
appear).

Proposition 3.4. The two constructions are equivalent in the sense that every dKTG op-
eration can be written as a composition of dKTG’ operations and every dKTG’ operation is
a composition of dKTG operations.

Proof. For the first direction we only need to show that a tree connected sum can be written
as a composition of dKTG’ operations. We have essentially done this before, in the proof
of Theorem 3.3. The composition of operations required is one dotted edge connected sum,
followed by a succession of dotted unzips, and orientation switches which we are ignoring for
simplicity (as noted before, they don’t cause any trouble):

#̇

γ1 γ2

T1 T2

u̇

u̇ u̇
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For the second direction, we need to write edge delete, dotted unzip and dotted edge
connected sum as a composition of dKTG operations. For dotted edge connected sum, this
was done in the proof of Theorem 3.3. Dotted unzip and edge delete are tree connected sums
with given graphs and given trees, similar to the proof of Therem 3.3, shown below:

T2
T1

e

γ

#T1,T2 c4

#T1,T2

T2
T1

e

γ

c2

�

Proposition 3.5. Z is a homomorphic expansion of dKTG’.

Proof. It is obvious from the homomorphicity of Z on dKTG that Z commutes with orien-
tation switch, cancel, and dotted edge connected sum.

Since dotted unzip and edge delete are unary operations, to show that Z commutes with
them, we need to verify that the values of Z on given graphs we used to produce these
operations from tree connected sums are trivial, shown here for edge delete:

Z(d(γ)) = Z(c4(γ#γ0)) = c4(Z(γ)#Z(γ0)).

Here, γ0 denotes the “dumbbell” graph with four anti-dots, shown above. If Z(γ0) = 1,
and provided that the edge to be deleted was cleared of chords previously, using the V I
relation, then the right side of the equation equals exactly d(Z(γ)). Since Zold of the trivially
embedded dumbbell (with no anti-dots) has a factor of ν on each circle, Z(γ0) is indeed 1,
since two anti-dots add a factor of ν−1 on each circle.

Unzip is done in an identical argument, where we use that Zold of the trivially embedded
“θ-graph” has a factor of ν1/2 on each of the three strands. �

4. The relationship with Drinfel’d associators

Associators are useful and intricate gadgets that were first introduced and studied by
Drinfel’d in [Dr1] and [Dr2]. The theory was later put in the context of parenthesized (a.k.a.
non-associative) braids by [LM], [BN3] and [BN4]. Here we present a construction of an
associator as the value of Z on a dotted KTG.

Let us first remind the reader of the definition. An associator is an element Φ ∈ A(↑3)
(chord diagrams on three upward-oriented vertical strands, subject to 4T ), which satisfies
three equations, called the pentagon and the two hexagon equations.
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The pentagon is an equation in A(↑4). Before we write it, let us define some necessary
maps ∆i : A(↑n) → A(↑n+1). ∆i, for i = 1, 2, .., n, is the doubling (unzip) of the i-th
strand, which acts on chord diagrams the same way unzip does. ∆0 adds an empty strand
on the left, leaving chord diagrams unchanged. Similarly, ∆n+1 adds a strand on the right.
Multiplication in A(↑n) is defined by stacking chord diagrams on top of each other. In this
notation, we can write the pentagon equation as follows:

∆4(Φ) ·∆2(Φ) ·∆0(Φ) = ∆1(Φ) ·∆3(Φ).

The hexagons are two equations in A(↑3), involving Φ ∈ A(↑3) and R ∈ A(↑2). The
permutation group Sn acts on A(↑n) by permuting the strands. We denote this action by
superscripts, for example, Φ213 means σ(Φ), where σ is the transposition of 1 and 2 in S3.
The two hexagon equations are as follows:

Φ ·∆2(R) · Φ231 = ∆3(R) · Φ213 · (∆0(R))
213

Φ ·∆2(R
−1) · Φ231 = ∆3(R

−1) · Φ213 · (∆0(R
−1))213

1

2

3 1 2 3

Note that for any chord diagram on a dKTG skeleton,
one can pick any spanning tree and use the V I relation
to “sweep it free of chords”. (In a slight abuse of nota-
tion, by a vertex we shall mean a trivalent vertex, and
by an edge, and edge connecting two trivalent vertices,
which may have dots and crosses on it, so it may really
be a path.) This “sweeping trick” induces a (well-defined) isomorphism from chord diagrams
on a dKTG with a specified spanning tree to some A(↑n). For example, there is an isomor-
phism from chord diagrams on a trivially embedded tetrahedron to A(↑3), as shown in the
figure on the right.

We will now prove that we have constructed an associator:

Theorem 4.1. The following Φ and R satisfy the pentagon and hexagon equations, and

therefore Φ is an associator: Φ = Z

(
1

2

3

)
; R = Z

(
1 2

)
.

#

Proof. We first prove that Φ satisfies the pentagon equation. In
the proof, we will use the “vertex connected sum” operation shown
in the figure on the right. This can be thought of either as a tree
connected sum in the first model, or the composition of a dotted
connected sum composed with dotted unzips in the second model.

Now let us consider the following sequence of operations. In each step, we are thinking
of Z of the pictured graph, which commutes with all the operations. To save space, we will
not write out the Z’s.

13



u̇

u̇

1a

1b

2a

2b

1c

3a

2b

2c

3b

3c

3a 2c

2b

3a

2a 2a

2b

1b
3b

2c

1c
3c

1a 1a

1b

1c

3b

3c

c5 ◦#2

∼=

3a

1a

1b

2c

3b

3c

2
3

2a 2b 1c

1 4

2b

Since Z is homomorphic, the result of this sequence of operations is ∆4(Φ) ·∆2(Φ) ·∆0(Φ),
the left side of the pentagon equation.

For the right side, we perform a vertex connected sum of two tetrahedra:

1d
3d

2d

1d

2d

3d

3e
1e

2e 2e

3e

1e

2d

3e

2e 3d

3d

1d
1e

1e

1
2

3
4

1e

1d

1e

2d

2e

3d

3e

3d

c3 ◦# V I ∼=

The result can be written as ∆1(Φ) ·∆3(Φ), the right side of the pentagon equation.
Since the two resulting dKTGs are istotopic (trivially embedded triangualar prisms with

crosses in the same positions), the two results have to be equal, and therefore Φ satisfies the
pentagon equation.

Morally, the hexagon equation amounts to adding a twist to one of the tetrahedra in the
right side of the pentagon, on the middle crossed edge, which produces a triangular prism
with a twist on the middle vertical edge. Unzipping this edge then gives a new twisted
tetrahedron.

More precisely, we carry this out in a similar fashion to the proof of the pentagon. The
reader can verify that all the twisted theta graphs used are isotopic to the one which defines
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R. For the left side of the first hexagon we take vertex connected sum of two twisted thetas
with a tetrahedron:

1b
3b

2b

1a
1c2c

2a

2a

1b

1a 2b
1c

3b

2c

1

2
3

c6 ◦#2

1a

2b

1c

2a

1b 3b

2c∼=

The result is Φ ·∆2(R) · Φ231, the left side of the first hexagon.
For the right side, we connect two tetrahedra with one twisted theta and unzip:

u̇

u̇

1d

1e

2e2d

3d

2f

3f

1f
1f

3f

2e1e
1d

3d

2f
2d

c5 ◦#2

3d

2e

2f

1f
2e

2d

1e
1d

3f
1

2

3
1d

1e

3f

2d

2e

1f

3d

2e

2f

∼=

The result reads ∆3(R) · Φ213 · (∆0(R))
213, the right hand side of the pentagon. We leave it

to the reader to check that the two twisted tetrahedron graphs are isotopic, proving that Φ
and R satisfy the first hexagon.

For the second hexagon, we first show that R−1 =
2 1 , by taking a vertex connected

sum with R:

2a

1b
2b

1a

2a

1b

1a

1 2

∼=c3 ◦#

1 2

2b
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Note that the resulting graph is isotopic to a trivially embedded theta-graph with one cross
on each edge. We have seen at the end of the proof of Proposition 3.5 that Z evaluated on
this graph is trivial, which proves the claim.

21

It is easy to check that the dKTG pictured on the left is isotopic to R−1. The
proof for the second hexagon equation is then identical to that of the first one, after
substituting this graph in place of R everywhere. �

5. A note on the Kirby band-slide move and the LMO invariant

In [LMMO] Le, Murakami, Murakami and Ohtsuki construct an invariant Ž of links which
induces an invariant of 3-manifolds, which was recently falsely disputed ([Ga]). The key step
is proving that Ž is invariant under the Kirby band-slide move K2, shown below:

The problem is that this move is not a well-defined operation of links, so somewhat cum-
bersome local considerations (“freezing” local pictures or fixing bracketings) need to be used.
Ž is defined to be a normalised version of the classical Kontsevich integral Z, where an extra
factor of ν is placed on each link component.

K2

e

uf

ue

f

In our language, let us consider the sub-structure of dKTG’
the objects of which are links with possibly one θ-graph
component, where circles are required to have two dots on
them, and the θ-graph component is required to have one
dot on each edge. The only operation we allow is unzip-
ping edges of the θ-graph. We think of the theta as the two
link components on which we want to perform K2, “fused
together” at the place where we perform the operation. Un-
zipping the middle edge of the theta gives back the original
link (before K2), while unzipping a side edge produces the
link after K2 is performed. The invariance under K2 is
then a direct consequence of the homomorphicity of Z with respect to dotted unzip, as sum-
marised by the figure on the right. Note that in this case Z is indeed Ž when restricted
further to links, via replacing the dots by their values of ν1/2. In summary, we have proven
the following:

Theorem 5.1. There exists an expansion Ž for links with possibly one knotted theta com-
ponent, which is homomorphic with respect to unzipping any edge of the theta component.
When restricted to link (with no thetas), Ž agrees with the invariant Ž of [LMMO].

The reader may verify that the unzip property of Theorem 5.1 is exactly the equivariance
property required for the use of Ž in the construction of an invariant of rational homology
spheres, see [LMO], [BGRT2], [BGRT3], [BGRT4].
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6. Appendix

Proof of Theorem 2.1. Let us denote the n-th piece of the classical finite type filtration
by Fn, and the augmentation ideal by I. First we prove that I = F1.

I is linearly generated by differences, i.e., I = 〈γ1− γ2〉, where γ1 and γ2 are KTGs of the
same skeleton. F1 is linearly generated by resolutions of 1-singular KTGs, i.e. F1 = 〈γ−γ′〉,
where γ and γ′ differ in one crossing change. Thus, it is obvious that F1 ⊆ I. The other
direction, I ⊆ F1 is true due to the fact that one can get to any knotting of a given trivalent
graph (skeleton) from any other through a series of crossing changes.

To prove that In ⊆ Fn, we use that I = F1. (F1)
n is generated by “formulas” containing

n 1-singular KTGs, possibly some further non-singular KTGs, joined by connected sums (the
only binary operation), and possibly with some other operations (unzips, deletes, orientation
switches) applied. The connected sum of a k-singular and an l-singular KTG is a (k + l)-
singular KTG. It remains to check that orientation switch, delete and unzip do not decrease
the number of double points. Switching the orientation of an edge with a double point only
introduces a negative sign. Unzipping an edge with a double point on it produces a sum of
two graphs with the same number of double points. Deleting an edge with a double point
on it produces zero. Thus, an element in (F1)

n is n-singular, therefore contained in Fn.

The last step is to show that Fn ⊆ In, i.e., that one can write any n-
singular KTG as n 1-singular, and possibly some further non-singular KTGs
with a series of operations applied to them. The proof is in the same vein
as proving that KTGs are finitely generated [Th], as illustrated here by the
example of a 2-singular knotted theta-graph, shown on the right. In the
figures, a trivalent vertex denotes a vertex, while a 4-valent one is a double point. We start
by taking a singular twisted tetrahedron for each double point, a (non-singular) twisted
tetrahedron for each crossing, and a standard tetrahedron for each vertex, as shown in the
figure below. We then apply a vertex connected sum (the composition of a connected sum
and two unzips, as defined at the begginning of the proof of Theorem 4.1) along each desired
edge. The result is the desired KTG with an extra loop in each plane region of the graph
projection. Deleting these superfluous loops concludes the proof.

#8 d6

�

Proof of Theorem 3.1. Let us assume that a homomorphic universal finite type invariant
of KTGs exists and call it Z. By definition, Z has to satisfy the following properties:

If γ is a singular KTG (a KTG with finitely many transverse double points), and Cγ is its
chord diagram (chords connect the pre-images of the double points), then

Z(γ) = Cγ+ higher order terms.
17



Z commutes with all KTG operations, in particular, with orientation switch, unzip, and
connected sum:

Z(Se(γ)) = Se(Z(γ)),

Z(ue(γ)) = ue(Z(γ)),

Z(γ#e,fδ) = Z(γ)#e,fZ(δ).

Let us denote the degree k part of the values of Z by Zk.
To prove the theorem, we deduce a sequence of lemmas from the above properties, until

we get a contradiction.

Lemma 6.1. Assume that Z is homomorphic, as above, and let Z(O) =: ν̂ be the value of
the trivially framed unknot. Then, in A(O), ν̂2 = ν̂. This implies that all positive degree
components of ν̂ are zero, i.e. ν̂ = 1.

Proof.

Z(O) = ν̂

Taking the connected sum of two unknots implies:

Z( ) = ν̂ ν̂

Unzipping the middle edge, we get an unknot back, which proves that ν̂ = ν̂2:

ν̂ = Z(O) = ν̂ ν̂ = ν̂2

To prove that the positive degree components of ν̂ are zero, let us write out ν̂ degree by
degree. The universality of Z implies that the degree zero part is 1. Let us denote the degree
k part by ν̂k, for 1 ≤ k.

ν̂ = 1 + ν̂1 + ν̂2 + ν̂3 + ...

Now we compute ν̂2 degree by degree:

ν̂2 = 1 + (2ν̂1) + (ν̂21 + 2ν̂2) + (ν̂1ν̂2 + ν̂2ν̂1 + 2ν̂3) + ...

Comparing term by term, we obtain that ν̂1 = 2ν̂1, so ν̂1 = 0, therefore ν̂2 = 2ν̂2 and so
ν̂2 = 0, and so on. By induction, the only term in the degree k component of ν̂2 which does
not involve a lower degree (hence zero) component of ν̂ is 2ν̂k, so ν̂k = 2ν̂k, and hence ν̂k = 0.

�

Note that the conclusion of Lemma 6.1 implies that ν̂ = 1 as an element of A(↑), as
A(O) ∼= A(↑).

Corollary 6.2. Z( ) = 1 ∈ A(↑2).
18



Proof. The Z-value of the dumbbell graph can be viewed as an element of A(↑2) by sweeping
the middle edge free of chords, as we have done before. (In fact, this is not even necessary,
as it is an easy property of chord diagrams that any chord diagram that any chord ending
on a bridge makes a chord diagram zero.)

The statement of the lemma is obviously true, as the dumbbell graph is the connected
sum of two unknots, and Z commutes with connected sum. �

Lemma 6.3. Φ̂ = Z

(
1

3

2

)
is an associator, with R̂ = Z

(
21

)
.

Proof. The proof is identical to the proof of Theorem 4.1, ommitting all dots and crosses. �

Corollary 6.4. Z2

(
1

3

2

)
= c

(
−

)
, for some non-zero constant c.

Proof. Since Z is non-trivial and KTG is generated by 1
3

2

and 21 , both of their

values cannot be trivial.
It is a well-known fact that the only non-trivial solution to the pentagon and hexagon

equations up to degree 2 is Φ̂ = 1 + c

(
−

)
. �

Corollary 6.5. Z2( ) 6= 0, in contradiction with Lemma 6.2.

Proof. Switching the orientation of edge 1 of the tetrahedron followed by unzipping the edge
labelled e below results in a dumbbell graph:

1
3

2
e

3 2

S(1)

ue ◦ S1
∼= S(1)

2
3

Therefore, in degree 2, we have

− 7→ − +

so Z2( ) is some non-zero constant multiple of the right side abive, which is non-
zero. �

This contradiction concludes the proof of Theorem 3.1. �
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