By McCool, there is an isomorphism
\[\Psi: \wp B_n \rightarrow \bigoplus_{i=1}^{n} \frac{F_n}{F_n x_i} \]

Allowing linear combinations, both sides have natural F.t. filtrations.

Question. Is \(\Psi \) a filtered map? \(\checkmark \) No!

Assuming so, it would induce
\[\text{gr}\, \Psi: \Delta^* \rightarrow \bigoplus_{i=1}^{n} \frac{F_n}{F_n x_i} \]

Question. What is this map? Is it an isomorphism?

Note that the standard “scatter” map
\[\partial \Delta^* \rightarrow \text{td}_{\infty} = \bigoplus_{i=1}^{\infty} \frac{F_n}{x_i} \]

is injective but not surjective.

Question. Can one discover \(\text{div} \) in this context?