Abelian Closures

January-14-11 8:42 AM

Is There "an Abelian Closure" for an addition category 2

karnel

To be more explicit, the following <u>universal property</u> can be used. A kernel of f is any morphism $k : K \rightarrow X$ such that:

• f o k is the zero morphism from K to Y;

• <u>Given any</u> morphism $k': K' \rightarrow X$ such that $f \circ k'$ is the zero morphism, there is a <u>unique</u> morphism $u: K' \rightarrow K$ such that $k \circ u = k'$.

Pasted from <<u>http://en.wikipedia.org/wiki/Kernel (category theory)</u>>

co-kernel

Explicitly, this means the following. The cokernel of $f: X \rightarrow Y$ is an object Q together with a morphism $q: Y \rightarrow Q$ such that the diagram

<u>commutes</u>. Moreover the morphism q must be <u>universal</u> for this diagram, i.e. any other such $q': Y \rightarrow Q'$ can be obtained by composing q with a unique morphism $u: Q \rightarrow Q'$:

Pasted from < http://en.wikipedia.org/wiki/Cokernel

Is there a "universal" version to the smallest tensor category containing (R, I), and all product maps, where R is a non-commutative ring and I is an ideal in it?