Yacobi on Quantum Groups at Roots of Unity

October-13-10 9:49 AM

Plan. 1:
$$U_q(q)|_{q=e^{2\pi i}} = j_k$$

2: $W_{iyl}/f_{il}f_{ing} \mod ules$
3. $\mathcal{F}^{iH}(q, j_k)$ an MTC.
Recall $Q \in \mathbb{C}^{\times}$ $U_q(sl_2)$ is a \mathcal{L} -algoby
 $gens: E_{i}F_{i}, k, k^{-i}$ $KE_{k'} = q^2 E$
 $MS \quad [E_{i}F_{j}] = \frac{K-K^{-i}}{q-q^{-i}}$ $KF_{k'} = q^{-2}F$
Assuming q not a root of $w_{i}f_{j}$,
 $V_q(n) = Sym \eta(\mathbb{C}^{2*}) = \mathbb{C}^{n}[x,y]$
 $E \sim x \frac{2}{3}$ really $F \equiv x^{n-i}y^{i} = [i]x^{n-i+i}y^{i-i}$
 $F \sim y \frac{2}{3x}$ $[n] = \frac{q^{n} q^{-n}}{q-q^{-i}}$,
 $Kx^{n-i}y^{i} = Q^{n-2i}x^{n-i}y^{i}$ $U_q(q)$ is a quasi-fring.